2019 IEEE Distinguished Lecture at Santa Clara Valley Section

Algorithm/Architecture Co-design for Smart Signals and Systems in Cognitive Cloud/Edge

Chris Gwo Giun Lee, PhD
Director, Bioinfotronics Research Center,
Professor, Department of Electrical Engineering,
National Cheng Kung University
Tainan, Taiwan

Outline

- Introduction
- Analytics Architecture: Abstraction at the System Level
- Algorithm Architecture Co-Design Space Exploration via Machine Learning
 - Algorithmic Intrinsic Complexity Metrics and Assessment
 - Intelligent Parallel/Reconfigurable Computing
- Case studies
 - Multimedia: MPEG
 - Mobile Health: Reconfigurable CNN

Introduction

Vibrant & Fast Changing World

Industry 1.0: Energy

Before Industrial Revolution:

- Innovations in ENERGY and ELECTRICITY brought forth automation
- Revolutionary changes to traditional Artisan craftsmanship from the social, political, and economical perspectives.

Industry 3.0: Information

Industry 4.0: AI

Today:

- INFORMATION explosion resulting in BIG DAT
- McKinsey forecasted on changes by AI to be 10 times faster and 300 times larger in scale as compared to former Industrial Revolution!

Apollo Navigation Computer Half a Century Ago

"That's one small step for an engineer; one giant leap for engineering."

Reaching Out Even Further via IoT & Going in Ever Deeper.. Ubiquitous Computers

Ever More Complex Analytics Algorithms Should Run on Analytics Architecture

Analytics Algorithm: Analyzes speech & images

Speech recognition with feelings

Facial emotion detection

Analytics Architecture: Analyzes dataflow

Algorithm/Architecture Co-Design: Analytics Architecture for SMART SoC

New Design Paradigm: Moving from programming to design and beyond...

Wirth from ETHZ (1975):

Programming = Algorithm + Data Structure

Lee from NCKU (2007):

Design = Algorithm + Architecture

Architectural Platforms Beyond Cloud... Post Moore's law

Human Brain: THE Most Power Efficient Intelligence

AlphaGo 13 Layer CNN

Human is 300x more power efficient

https://www.slideshare.net/ShaneSeungwhanMoon/how-alphago-works

Media SoC Lab.

Design Space w/ Different Levels of Abstraction

Different instances or realizations

Traditionally Software/Hardware Co-design
Current Algorithm/Architecture Co-exploration for yet larger systems but

how?

Algorithm/Architecture Co-Design: Cross Level Abstraction at the System Level

Algorithm Adichited tues i Gn- May loration

- Know software/hardware ingredients in early design phase hence from top level
- Extract complexity features from dataflow graph models

Exploring Algorithm/Architecture Co-Design Space Via Machine Learning/Spectral Graph Theory

MODELING the COMPUTATIONAL PLATFORM

via

Dataflow Graphs (DFG)

Dataflow...

Dataflow Graph Modelling Computational Platform @ Various Data Granularity

- They should contain:
 - Algorithmic information or behavior
 - Architectural information (Software/Hardware) for implementation
- Some important dataflow models are:
 - Directed acyclic graph (DAG)
 - Synchronous dataflow (SDF) graph
 - Control data flow graph (CDFG)
 - Kahn process networks (KPN)
 - Y-chart application programming interface (YAPI)

Algorithm/Architecture Co-Design Space Exploration

Via

Machine Learning

How Big is Big?

Algorithmic Intrinsic Complexity Metrices/Features PLATFORM INDEPENDENCE

Number of Operations

- Estimates the number of each type of operations
 - Addition/Subtraction
 - Multiplication
 - Division
 - Shift
 - Logic operations
- Operations with constant input and variable input should be differentiated to provide high accuracy
 - X + Y vs. X + 5 (X and Y are variables)
 - $X \times Y \text{ vs. } X \times \overline{5} \text{ (X and Y are variables)}$
- In addition, the precision of each operand should be taken into account, since it can significantly influence complexity

SMART TRANSFORM PAIR via Spectral Graph Theory (SGT) for

Intelligent Parallel/Reconfigurable Computing

Parallel Computing (Forward Transform): Efficient & Flexible Cognitive Cloud

- Using SGT as machine learning in exploring the AAC space:
 - Connected component are eigen-decomposed where spectrum of unconnected graph components serves as information or features extracted
 - decision making performed via the bi-partite or k-partitioning based on principle axis theorem optimized for data independency

Spectral Graph Theory

Graph

Adjacency matrix A

$$\mathbf{A}(\mathbf{i},\mathbf{j}) = \begin{cases} 1 & \text{if } \text{vertex}_{\mathbf{i}} \text{ and } \text{vertix}_{\mathbf{j}} \text{ are adjacent to each other} \\ 0 & \text{otherwise} \end{cases} \qquad \mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Laplacian matrix L=D-A, where D is a diagonal matrix where the diagonal elements represents the number of edges connected to that node.

$$\mathbf{L}(i,j) = \begin{cases} \mathbf{D}(i,j) & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } \text{vertex}_i \text{ is adjacent to } \text{vertix}_j \\ 0 & \text{otherwise} \end{cases} \qquad \mathbf{L} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

- Gwo Giun Lee, He-Yuan Lin, Chun-Fu Chen, Tsung-Yuan Huang, "Quantifying Intrinsic Parallelism Using Linear Algebra for Algorithm/Architecture Co-Exploration," IEEE Transactions on Parallel and Distributed Systems, vol. 23, iss. 5, pp. 944-957, May 2012
- Gwo-Giun Lee, He-Yuan Lin, "Method of analyzing intrinsic parallelism of algorithm," USA, Patent No. US8522224 B2, Aug. 27, 2013.
- Gwo-Giun Lee, Ming-Jiun Wang, He-Yuan Lin, "Method and Algorithm Analyzer for Determining a Design Framework," USA, Patent No. US8621414 B2, Dec. 31, 2013.
- (Boston, MA, June 1, 2015, GLOBE NEWSWIRE)

Degree of Parallelism: Eigen-Analysis of DFGs using SGT

Algorithm

$$O_1 = A_1 + B_1 + C_1 + D_1$$

$$O_2 = A_2 + B_2 + C_2 + D_2$$

Causation graph

Spectrum

Eigenvalue: 0, 0, 1, 1, 3, 3

Eigenvector:

Dataflow diagram

Laplacian matrix

Г 1	0	0	0	0	-1
	1				
0	0	1	0	-1	0
0	0	0	1	-1	0
0	0	-1	-1	2	0
-1	-1	0	0	0	2

Parallelism

(Homogeneous)

Quantification of parallelization, Instruction Set Architecture (ISA) design

Reconfigurable Computing (Inverse Transform): Efficient & Flexible Mobile Edge

(c) Reconfigurable architecture

(d) Reconfigurable Architecture of NVDLA

- Commonalities are analyzed on DFGs for reuse when synthesizing or reconfiguring the CNN computational platform.
 - Introduce efficient flexible architecture with algorithmic convolution for CNN are eigen-transformed to matrix operations with higher symmetry

Reconfigurable Architecture: Commonality Extraction from DFGs

Observe the common parts between each dataflow graph.

AVC/H.264 filter coefficients [1,-5,20,20,-5,1]

MPEG-4 Chroma interpolation, MPEG2, and AVC/H.264 chroma prediction

(i): left shift by i (i): right shift by i (ii): addition

Reconfigurable fractional interpolation

Coefficients	[-8,24,-48,160,160,-48,24,-8]	[1,-5,20,20,-5,1]	[1 1 1 1]	[1 1]
Module 0			→	(H)
Module 1			→	→
Module 2	1	(1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	→	
Module 3				
Module 4	→3→	<u> </u>		

Four Symmetrical Patterns After PCA

- Performed PCA to extract the commonality in Gabor filter.
- The transformed Gabor filter bank has four symmetry patterns. Their coefficient are illustrated in the following:

Reconfigurable Transformed Gabor Filter Bank

A Very Useful SMART Sensor System

SMARTLET: SMART toiLET

SMART is a BUZZ word that SELLS

AAC Study Cases:

Observe and Learn from Nature in Engineering Innovations.

Multimedia

Algorithm/architecture co-design of spatial-temporal recursive motion estimator

• Spatial-temporal recursive ME

- Initial candidates from spatial and temporal references followed by local search
 - → blocks cannot be processed in parallel
- Performance comparison

Complexity vs. performance

# of search points	10	15	20	25	30	35	40
Clock rate (MHz)	54	81	108	135	162	189	216

Assumption: 16 processing elements performing accumulation of absolute difference with utilization 75%

Architecture comparison

Terms	MHS[3]	Our		
PSNR	35.41 dB	35.45 dB		
Application	1920x1080 @ 30 FPS	1920x1080 @ 30 FPS		
Search range	H: ± 128, V: ± 64	H: ± 128, V: ± 64		
Technology	0.18 mm	0.18 mm		
Clock rate	108 MHz	81 MHz		
Total cell area	562.5 K gates	51.2 K gates		

H: horizontal; V: vertical

- [1] Y. Nie and K. Ma, "Adaptive irregular pattern search with matching prejudgment for fast block-matching motion Estimation," IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 6, pp. 789–794, Jun. 2005.
- [2] C. Zhu, X. Lin, L. Chau, and L. Po, "Enhanced hexagonal search for fast block motion estimation," IEEE. Trans. Circuits Syst. Video Technol., vol. 14, no. 10, pp. 1210–1214, Oct. 2004.
- [3] Y. Murachi, K. Hamano, T. Matsuno, J. Miyakoshi, M. Miyama, and M. Yoshimoto, "A 95 mW MPEG2 MP@HL motion estimation processor core for portable high-resolution video application," IEICE Trans. Fund. Electron. Commun. Comput. Sci., vol. E88-A, pp. 3492–3499, Dec. 2005.

Mobile Health: Deep Learning

Self Organizing Cerebral Organoids by Madeline Lancaster

Convolutional Neural Network (CNN)

- Convolution layers for feature extraction & fully connected network as classifiers
- Feature layers updated or information mined from large amount of data via supervised learning
- Bayesian learning and Linsker's self-organizing Kohonen feature map
- Convolution/feature layers constitute multiresolution pyramid like Azriel Rosenfeld?

Third Harmonically Generated Melasma Images with different Dendricity Levels as described by Medical Experts

Normal Image

More Dendritic Images

Dendritic Image

Most Dendritic Image

Gabor Features to Characterize Dendricity Directions

Original Image

Combination Results

Direction = 0

Direction = 90°

 $\overline{\text{Direction}} = 45^{\circ}$

Direction = 135°

Gabor Features and PCA Transformed Filters with Higher Symmetry

- (a) Gabor filter with parameters: $\sigma_x = \sigma_y = 2.46 / \pi$, $\omega = \pi / 2$, and $\theta = 0$. (b) Gabor filter with parameters: $\sigma_x = \sigma_y = 2.46 / \pi$, $\omega = \pi / 2$, and $\theta = \pi / 2$.
- (c) Coefficients distribution for two Gabor filters.
- (d) Transformed filter for first Gabor filter.
- (e) Transformed filter for second Gabor filter.
- (f) Coefficients distribution for two transformed filters.

Comparison for Gabor Filter Bank and Transformed Gabor Filter Bank

• We perform the Gabor filter bank consisted of 16 Gabor filters over the 512×512 image with zero-padding.

Dataflow Model		Gabor Filter Bank	Transformed Gabor Filter Bank	Remark	
Number of	Addition	201,326,592	72,351,744		
operations	Multiplication	205,520,896	60,817,408		
Storage requirement (bits)		139,776	119,808		
Data transfer (bits)		142,606,336	142,606,336	Estimated for total or average but peak data transfer should drop.	
Degree of parallelism		16	1	Implementation of Gabor filter bank is performing convolution with 16 Gabor filters sequentially, since we want the same starting point to compare.	
	Intel Core i7-5820k	1.85	0.19		
Execution time	Intel Core i7-3770	2.51	0.27		
(sec)	Intel Core i5-3550	2.01	0.21		
	Intel Core i7-930	2.78	0.33		

Conclusion

- Algorithm and Architecture needs to be looked at together
- Provides flexible, high accuracy, high efficiency, low power, and LOW COST designs
- Methodology was adopted by industry in deploying
 50+ million units of LCD Panels worldwide
- Cross level of abstraction framework which systematically models computational (5+G) platforms to solve cross disciplinary problems in SMART manners for another half a century (?)

Computer, Communication, Control &

