

## What Every Electrical Engineer Should Know about *Nonlinear* Circuits and Systems

Michael Peter Kennedy FIEEE University College Cork, Ireland

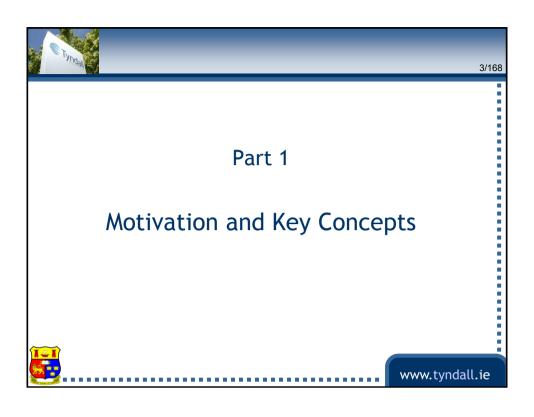


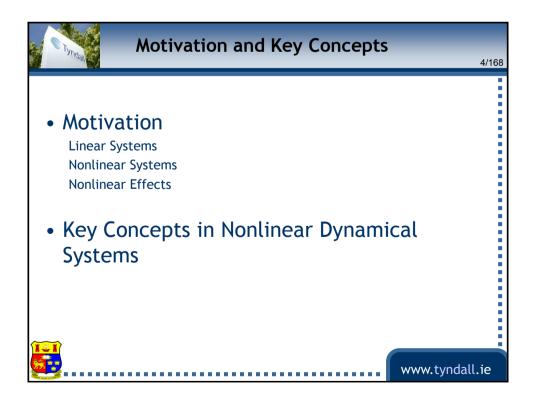
IEEE CAS Society, Santa Clara Valley Chapter 05 August 2013

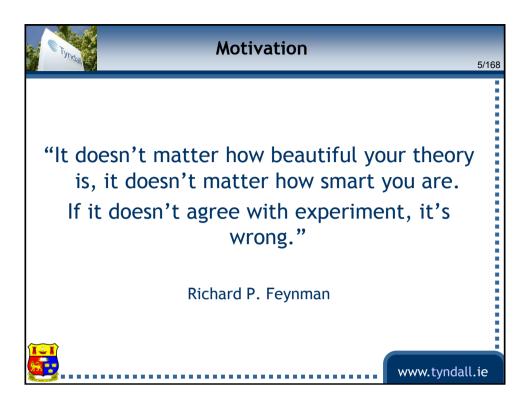


www.tyndall.ie

# Outline Part 1: Motivation and Key Concepts (70) Part 2: Examples SPICE DC Analysis Schmitt Trigger Colpitts Oscillator Injection-Locking Digital Delta-Sigma Modulator www.tyndall.ie

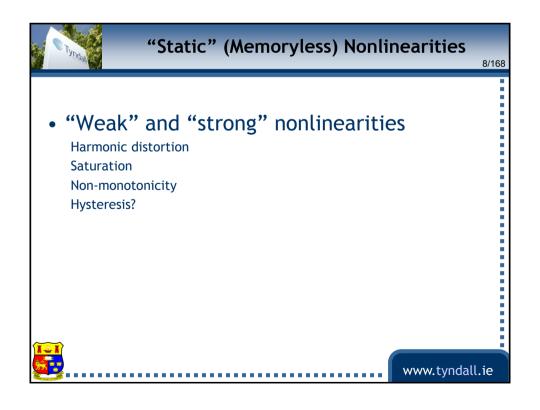












#### **Nonlinear Effects**

9/168

- Harmonic distortion (superharmonics)
- Saturation
- Amplitude limiting
- Bistability
- "Hysteresis"
- Subharmonics
- Synchronization



www.tyndall.ie

## ndall .

#### Motivation

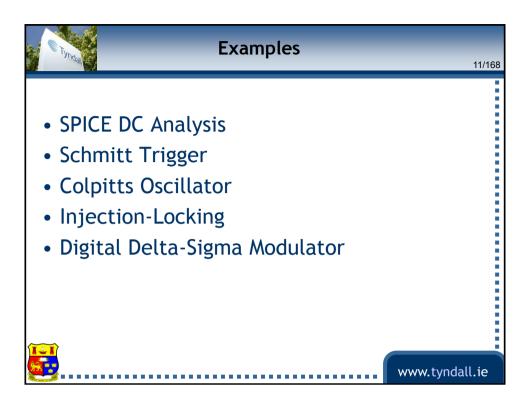
10/168

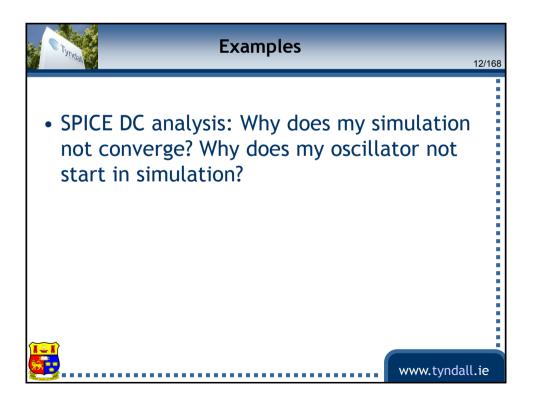
"...even the theory of the simplest valve oscillator cannot in principle be reduced to the investigation of a linear differential equation and requires the study of a nonlinear equation."

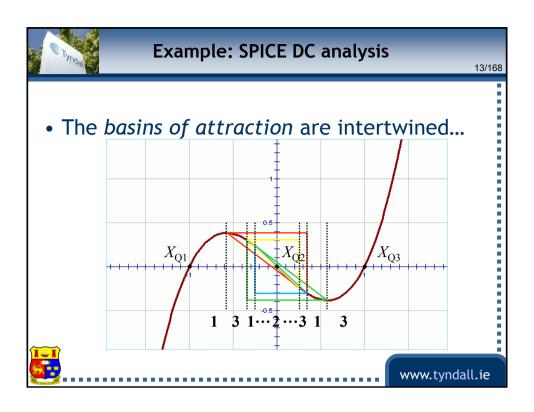
...a linear equation, for example, cannot explain the fact that a valve oscillator, independently of the initial conditions, has a tendency to reach determined steady-state conditions."

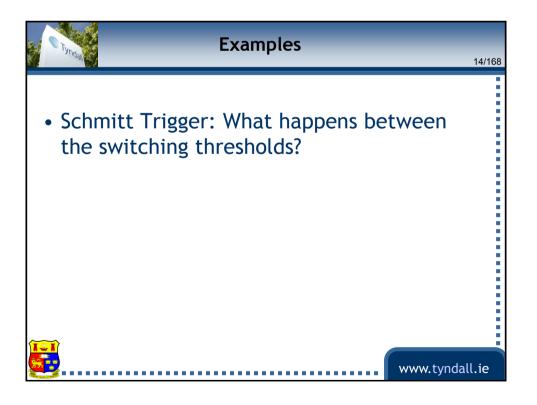
TZ T

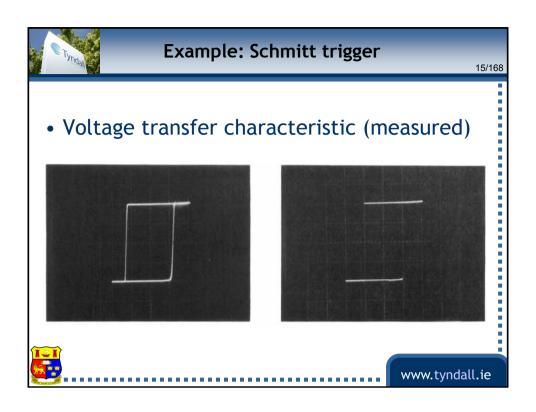
A.A. Andronov, A.A. Vitt, and S.E. Khaikin, *Theory of Oscillators*, Pergamon Press, 1966

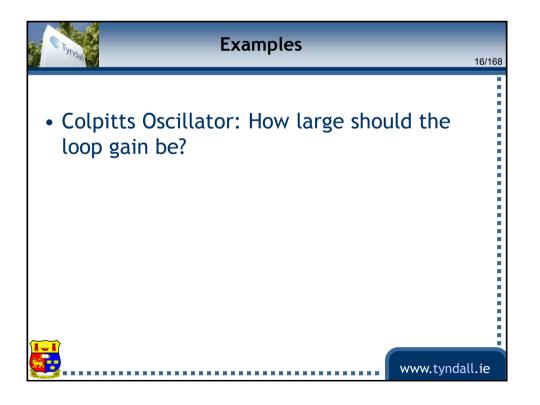


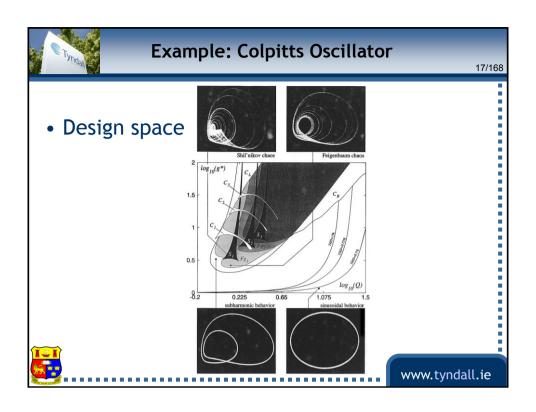


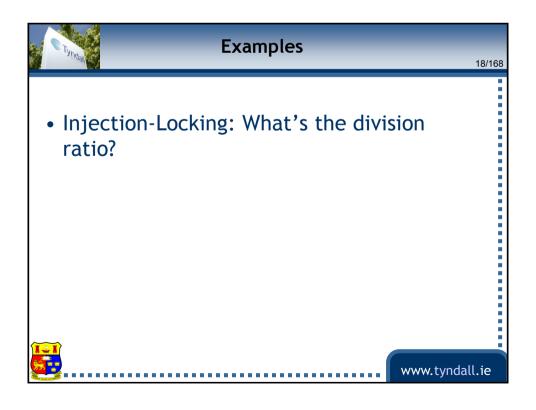


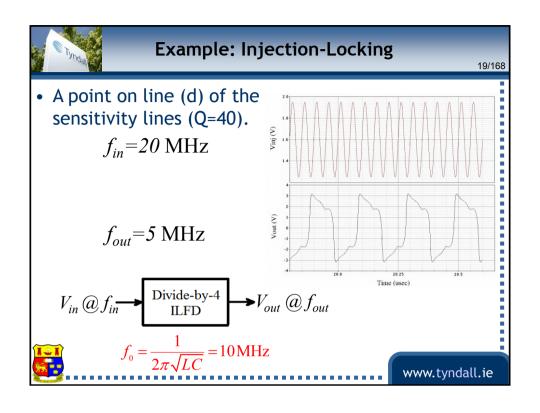


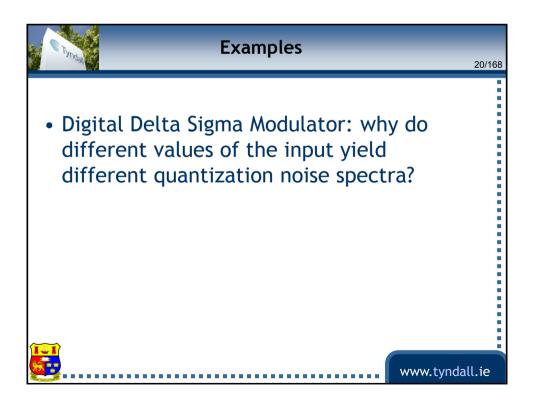


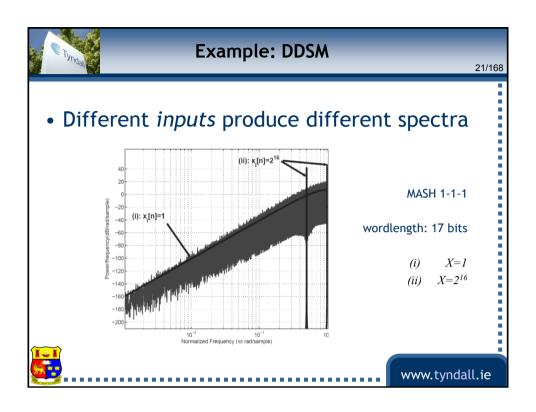


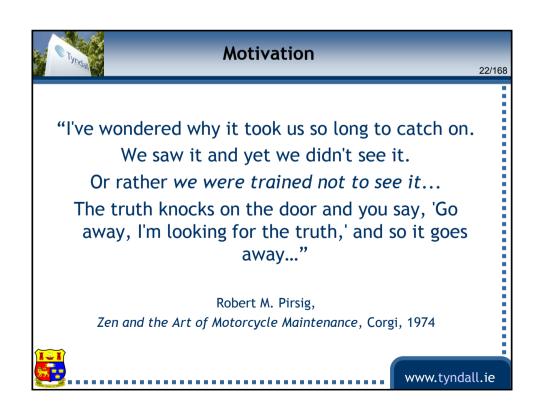




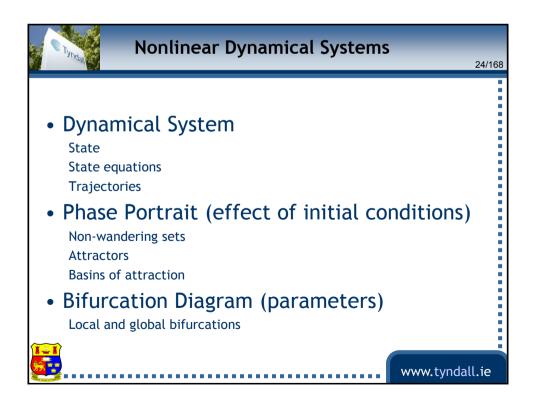












#### **Nonlinear Dynamical Systems**

5/16

- A dynamical system comprises a *state space* and a *dynamic*
- The *state space* is the set of possible states of the system; it is also called the "phase space"
- The *dynamic* describes the evolution of the state with time; it is also called the "state equations" or the "equations of motion"



www.tyndall.ie

## Tyndall

#### State Equations (Dynamic)

6/168

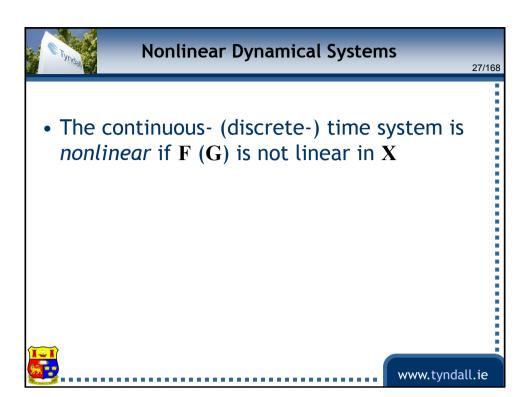
• Continuous time

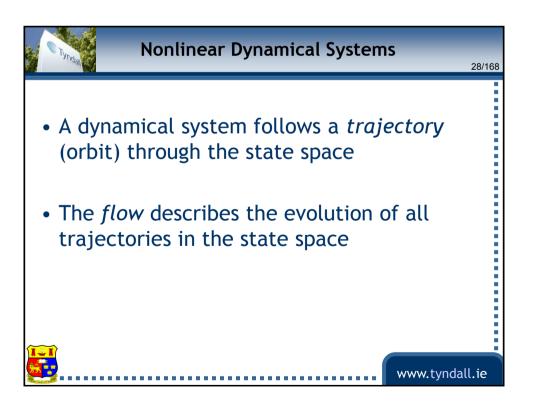
$$\dot{\mathbf{X}}(t) = \mathbf{F}(\mathbf{X}(t); \mu)$$

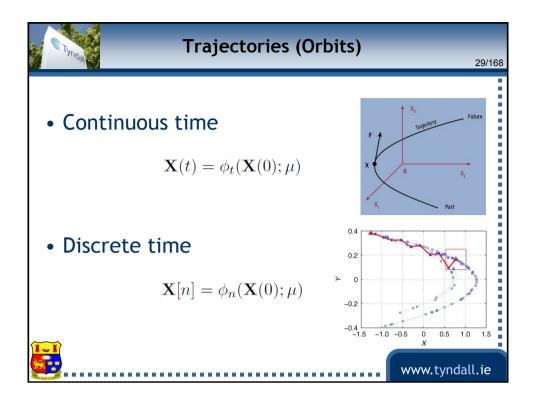
• Discrete time

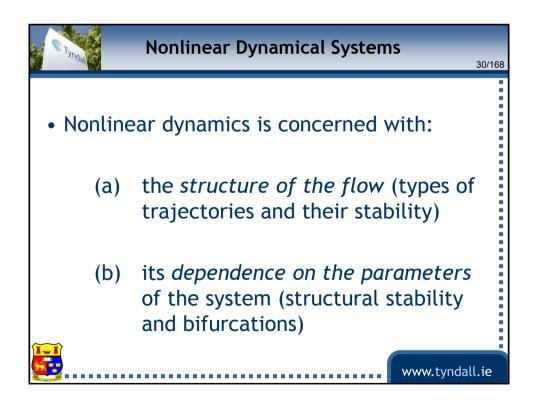
$$\mathbf{X}[n+1] = \mathbf{G}(\mathbf{X}[n]; \mu)$$



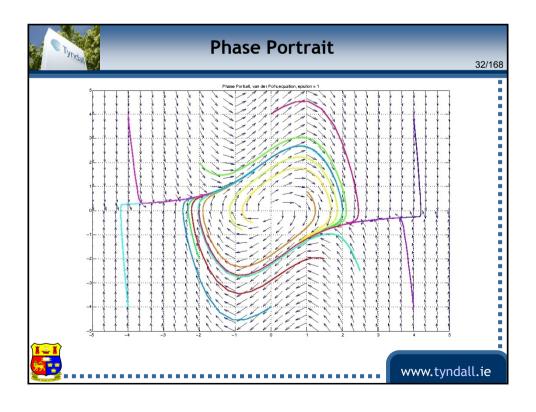


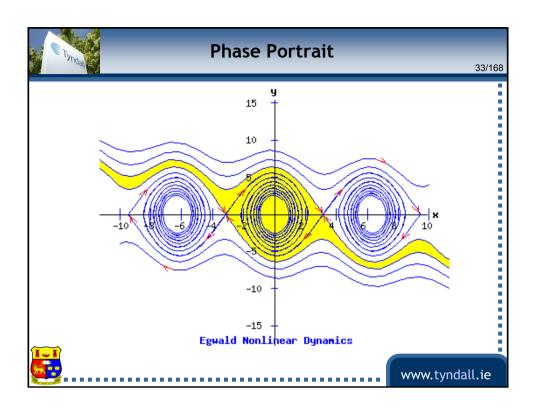


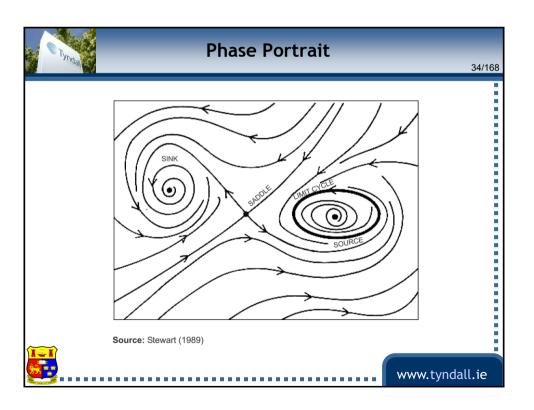


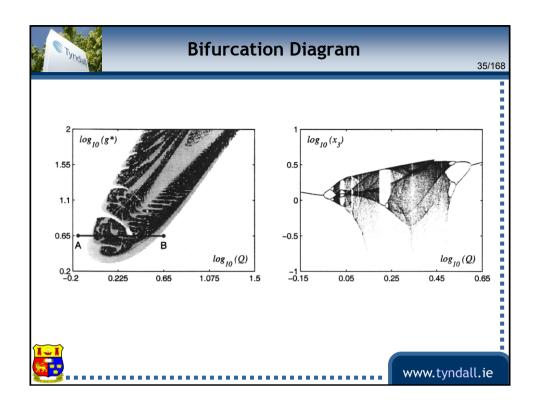


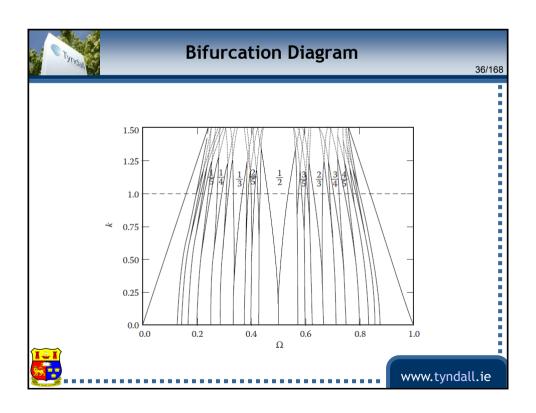
## Phase Portrait and Bifurcation Diagram • Phase portrait: Structure of the flow • Bifurcation diagram: Dependence of the flow on the parameters www.tyndall.ie

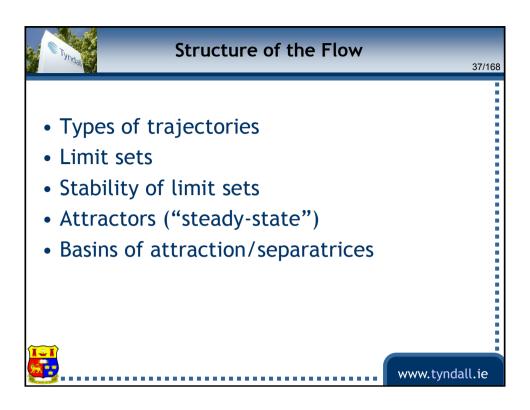


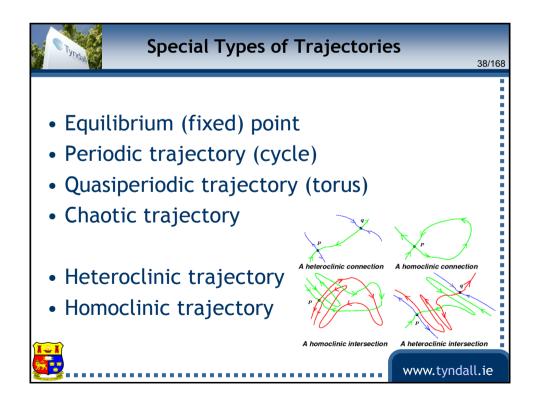












#### **Non-Wandering Sets**

39/168

- Equilibrium (fixed) point
- Periodic trajectory (cycle)
- Quasiperiodic trajectory (torus)
- Chaotic trajectory



www.tyndall.ie

### 

#### **Equilibrium (Fixed) Point**

40/168

• Continuous time  $\dot{\mathbf{X}}(t) = \mathbf{F}(\mathbf{X}(t); \mu)$ 

$$\mathbf{X}(t) = \mathbf{X}_Q$$

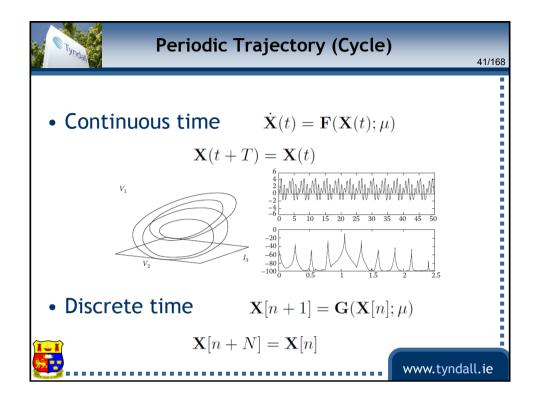
$$\mathbf{F}(\mathbf{X}_Q; \mu) = 0$$

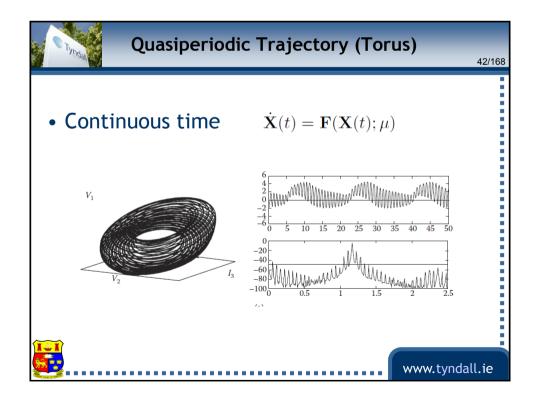
• Discrete time  $X[n+1] = G(X[n]; \mu)$ 

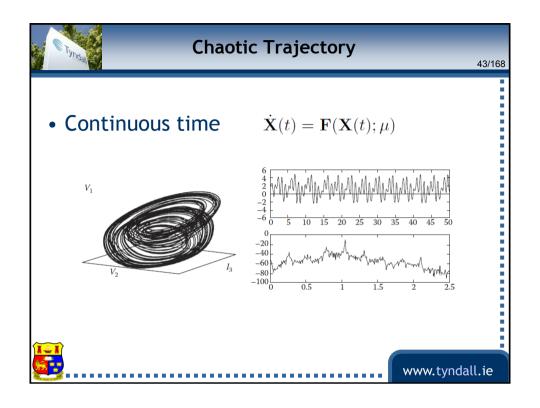
$$\mathbf{X}[n+1] = \mathbf{X}_Q$$

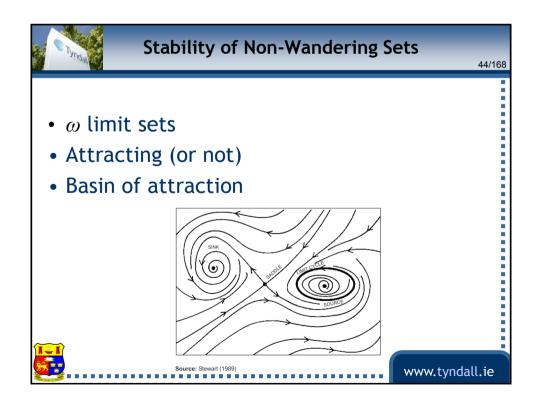
$$\mathbf{G}(\mathbf{X}_Q; \mu) = \mathbf{X}_Q$$













#### Stability of Non-Wandering Sets: Techniques

45/1

- Linearization (local behavior; "smallsignal" analysis)
- Eigenvalues (negative or positive real parts [CT]; magnitudes less than or greater than unity [DT])



www.tyndall.ie



#### Stability of Non-Wandering Sets: Techniques

46/16

- Poincaré maps (reduce CT system to equivalent lower order DT system)
- Lyapunov exponents (generalized notion of stability)





#### Equilibrium (Fixed) Point

47/168

• Continuous time  $\dot{\mathbf{X}}(t) = \mathbf{F}(\mathbf{X}(t); \mu)$ 

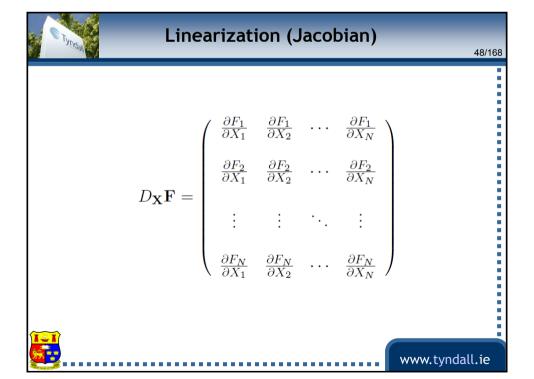
$$\dot{\mathbf{X}}(t) = \mathbf{F}(\mathbf{X}(t); \mu)$$

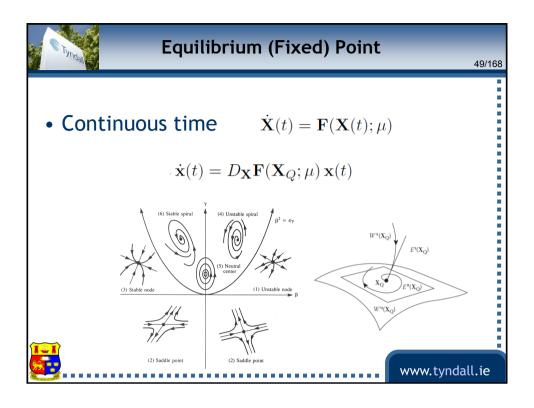
$$\dot{\mathbf{x}}(t) = D_{\mathbf{X}} \mathbf{F}(\mathbf{X}_Q; \mu) \, \mathbf{x}(t)$$

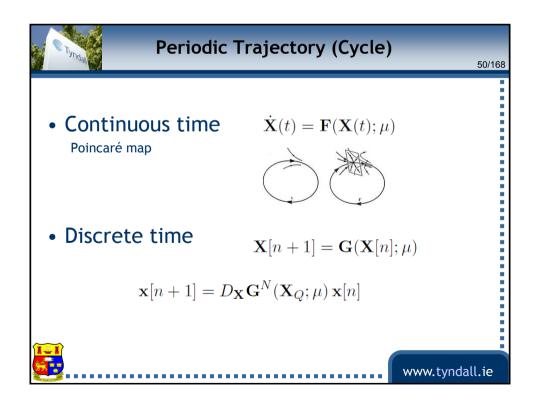
Discrete time 
$$\mathbf{X}[n+1] = \mathbf{G}(\mathbf{X}[n]; \mu)$$

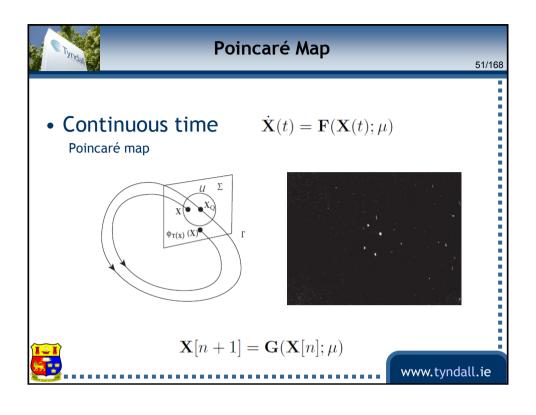
$$\mathbf{x}[n+1] = D_{\mathbf{X}}\mathbf{G}(\mathbf{X}_Q; \mu)\,\mathbf{x}[n]$$

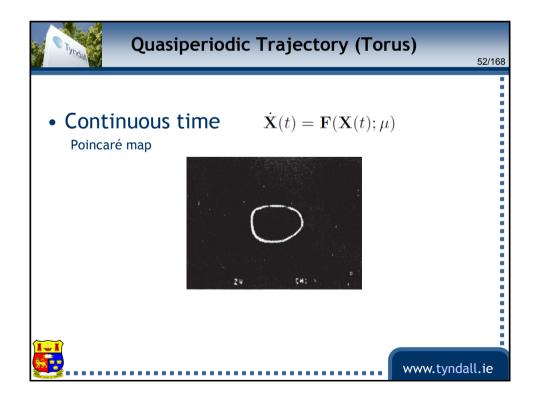


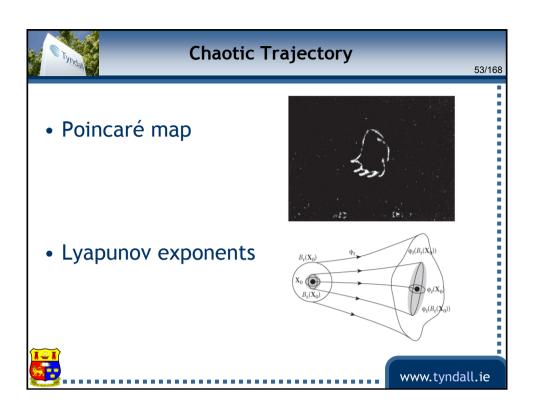


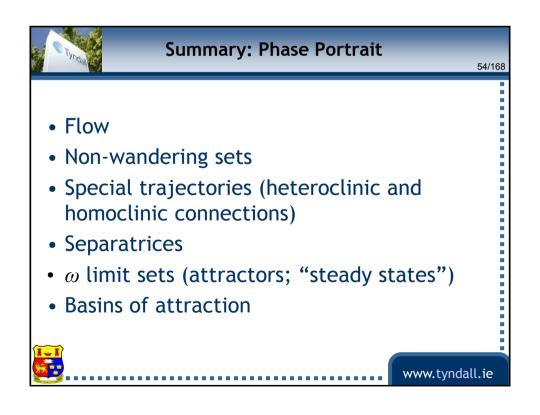


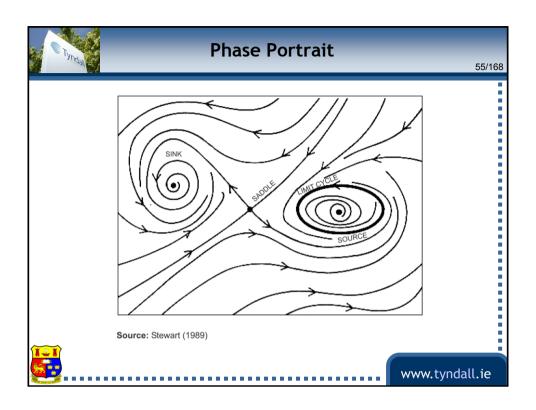


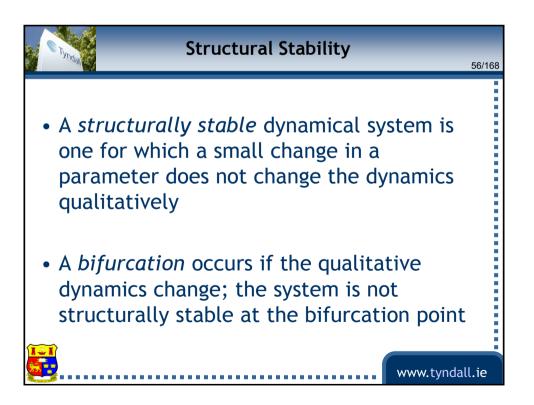




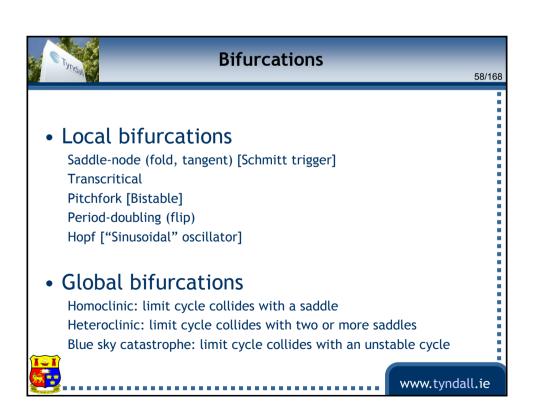


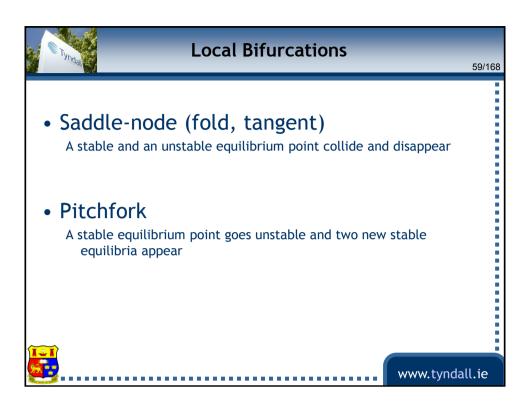


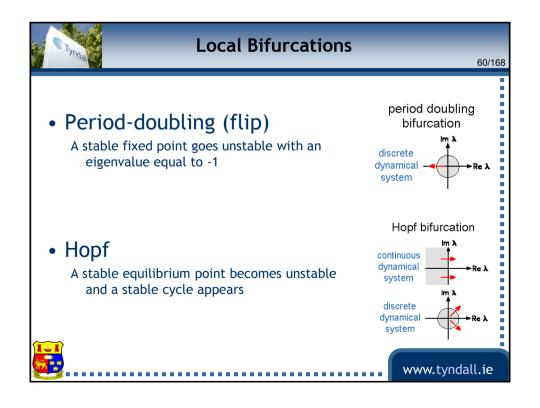




## Bifurcations Local bifurcation: The stability of an equilibrium (or fixed) point changes Global bifurcation: A 'larger' invariant set, such as a periodic orbit, collides with an equilibrium







#### Saddle-Node Bifurcation [CT]

61/168

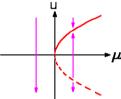
- State equation
- Equilibrium points
- Stability

$$\dot{X}(t) = \mu - X^2(t)$$

$$X_Q = \pm \sqrt{\mu}$$

$$\dot{x}(t) = (-2X_Q) x(t)$$

saddle-node bifurcation



$$\dot{X}(t) = \mu - X^2(t)$$

www.tyndall.ie



#### Saddle-Node Bifurcation [DT]

62/168

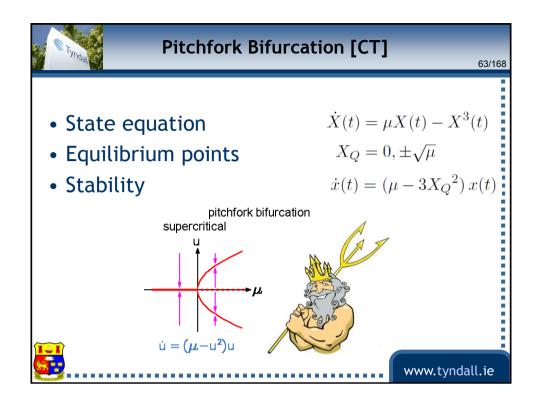
- State equation
- Equilibrium points
- Stability

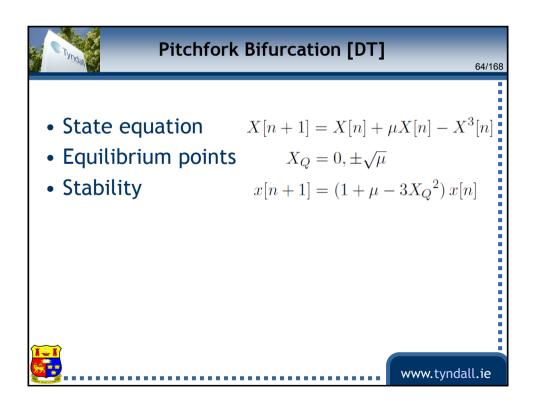
$$X[n+1] = X[n] + \mu - X^{2}[n]$$

$$X_Q = \pm \sqrt{\mu}$$

$$x[n+1] = (1 - 2X_Q) x[n]$$







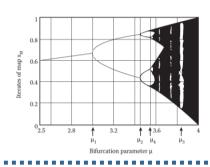


#### Period-Doubling Bifurcation [DT]

- State equation  $X[n+1] = \mu X[n] X^2[n]$
- Equilibrium point(s)  $X_Q = -1 \pm \sqrt{1 + \mu}$

Stability

$$x[n+1] = (-1 - 2X_Q)x[n]$$







www.tyndall.ie

#### **Hopf Bifurcation [CT]**

• State equation

$$\dot{X}_1(t) = \mu X_1(t) - \omega X_2(t) + (-X_1(t) - \beta X_2(t))(X_1^2(t) + X_2^2(t))$$

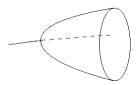
$$\dot{X}_2(t) = \omega X_1(t) + \mu X_2(t) + (\beta X_1(t) - X_2(t))(X_1^2(t) + X_2^2(t))$$

• Equilibrium point

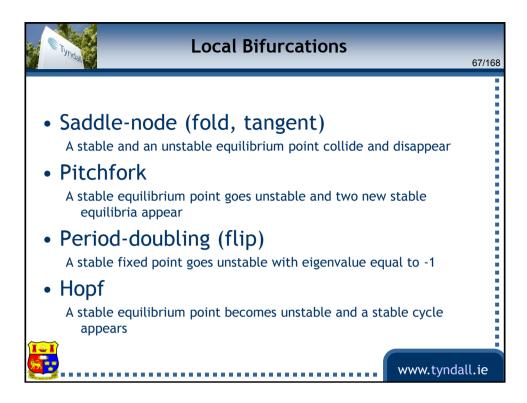
$$X_{1Q} = 0$$

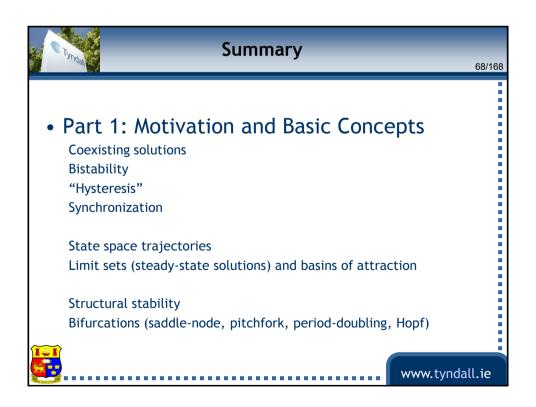
$$X_{2Q} = 0$$

Stability











#### **References: Nonlinear Dynamics**

69/168

[K93a] M.P. Kennedy. Three steps to chaos part I: Evolution. *IEEE Trans. Circuits and Systems-Part I:* Fundamental Theory and Applications, 40(10):640-656, October 1993.

[K93b] M.P. Kennedy. Three steps to chaos part II: A Chua's circuit primer. *IEEE Trans. Circuits and Systems-Part I: Fundamental Theory and Applications*, 40(10):657-674, October 1993.

[K94] M.P. Kennedy. Basic concepts of nonlinear dynamics and chaos. In C. Toumazou, editor, *Circuits and Systems Tutorials*, pages 289-313. IEEE Press, London, 1994.



www.tyndall.ie



#### **References: Nonlinear Dynamics**

70/168

[NBb] A.H. Nayfeh and B. Balachandran. Applied Nonlinear Dynamics. Wiley, 1995.

[S01] S.H. Strogatz. Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering. Perseus Books, 2001.



## T<sub>Vndall</sub>

#### Part 2: Examples

71/168

- SPICE DC Analysis (intertwined basins of attraction)
- Schmitt Trigger (Saddle-node bifurcation)
- Colpitts Oscillator (Hopf bifurcation)
- Injection-Locking (Arnold tongues)
- Digital Delta-Sigma Modulator (Coexisting solutions)



www.tyndall.ie

## Tyndall

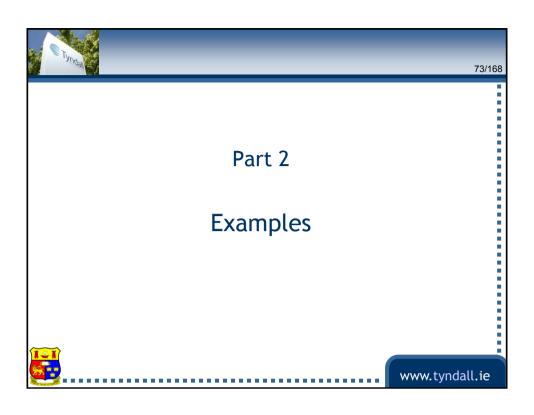
#### **Acknowledgements**

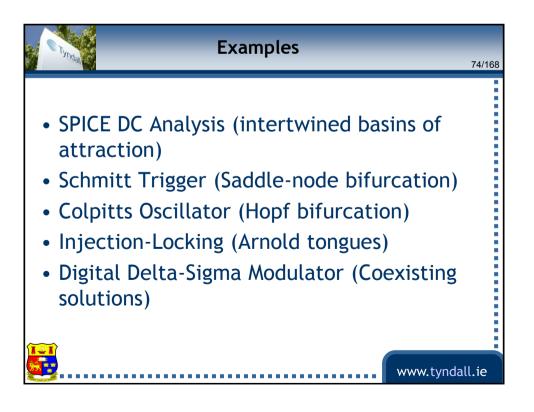
72/168

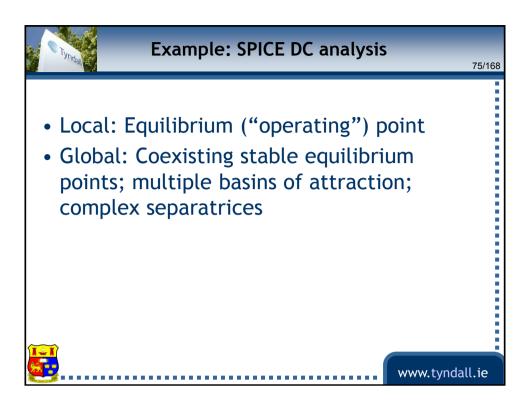
- FIRB Italian National Research Program RBAP06L4S5
- Science Foundation Ireland Grant 08/IN1/I1854

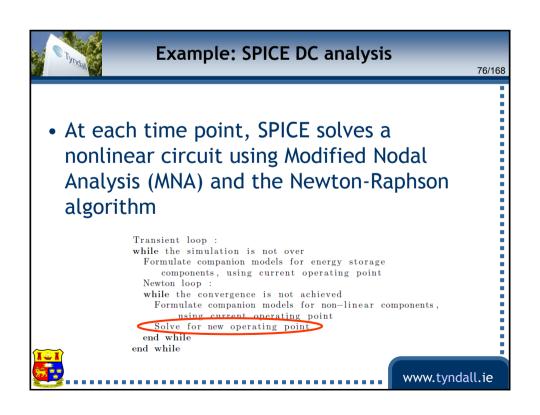


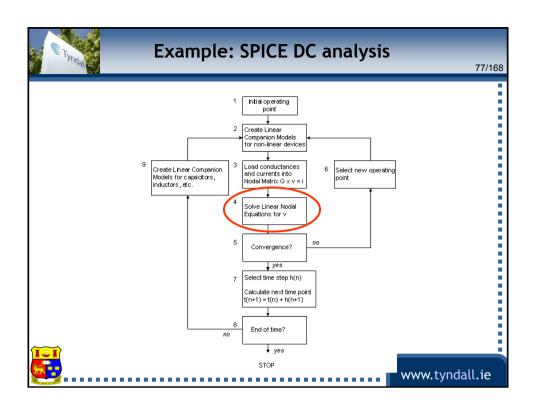


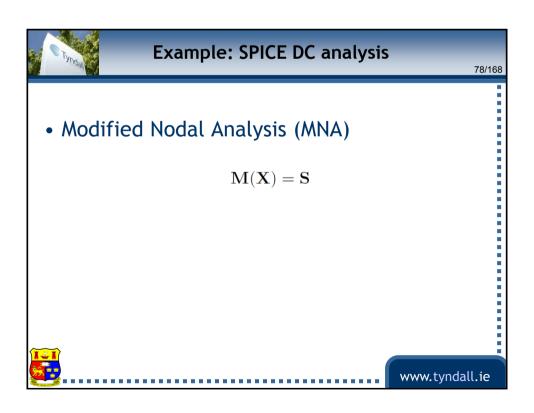












# Tyndall

## **Example: SPICE DC analysis**

79/168

• Use Newton-Raphson to solve

$$F(X) = 0$$

where

$$F(X) = M(X) - S$$



www.tyndall.ie

## 

#### **Example: SPICE DC analysis**

80/168

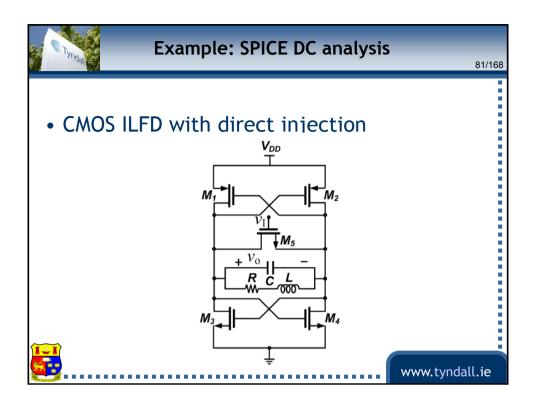
• Newton-Raphson is a dynamical system

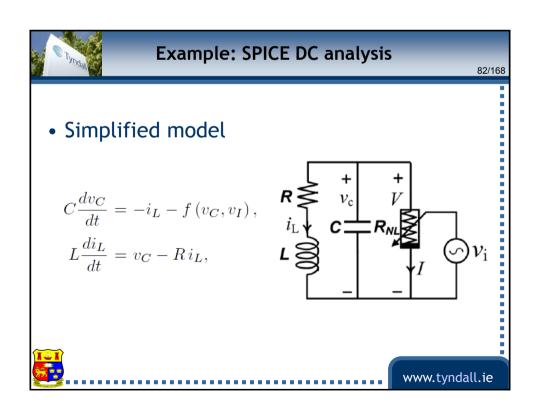
$$\mathbf{X}[n+1] = \mathbf{X}[n] - D_{\mathbf{X}}\mathbf{F}^{-1}(\mathbf{X}[n])\mathbf{F}(\mathbf{X}[n])$$

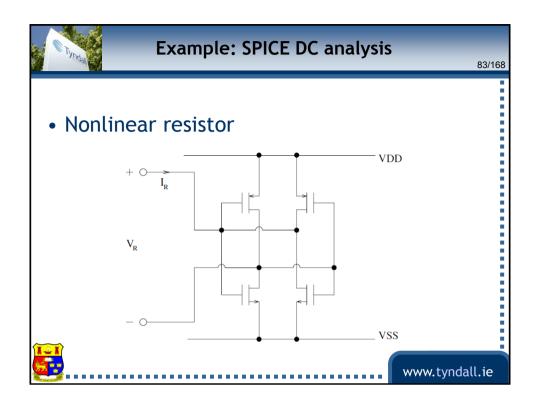
with equilibrium (fixed) point(s) at

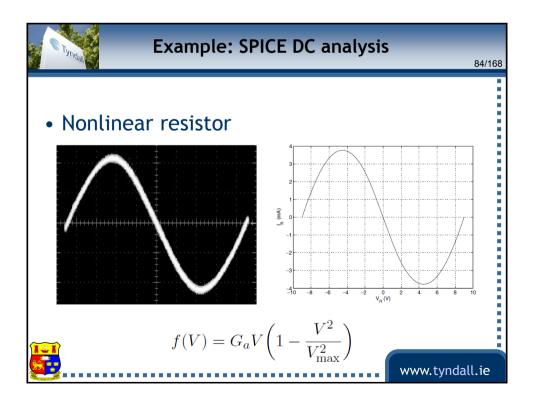
$$F(X) = 0$$













## **Example: SPICE DC analysis**

85/168

• Modified Nodal Analysis (MNA)

$$\frac{1}{R}V + f(V) = 0$$

where

$$f(V) = G_a V \left( 1 - \frac{V^2}{V_{\text{max}}^2} \right)$$



www.tyndall.ie



#### **Example: SPICE DC analysis**

86/16

• Use Newton-Raphson to solve

$$F(V) = 0$$

where

$$F(V) = \left(\frac{1}{R} + G_a\right)V + \left(-\frac{G_a}{V_{\text{max}}^2}\right)V^3$$





### **Example: SPICE DC analysis**

87/168

• Newton-Raphson is a dynamical system

$$X[n+1] = X[n] - \frac{F(X[n])}{\frac{d}{dX}F(X[n])}$$

with

$$F(X) = c_1 X + c_3 X^3$$

and

$$c_1 = \left(\frac{1}{R} + G_a\right), \ c_3 = \left(-\frac{G_a}{V_{\text{max}}^2}\right)$$



www.tyndall.ie



#### **Example: SPICE DC analysis**

88/168

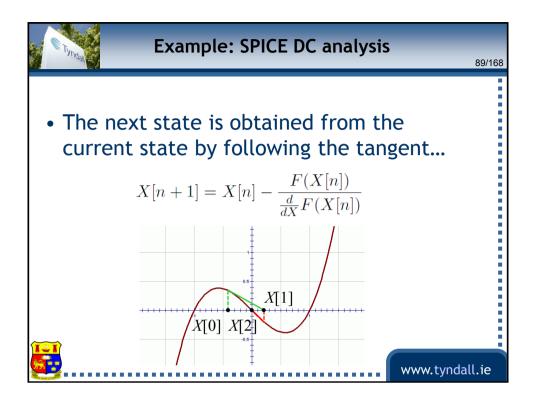
• State equation

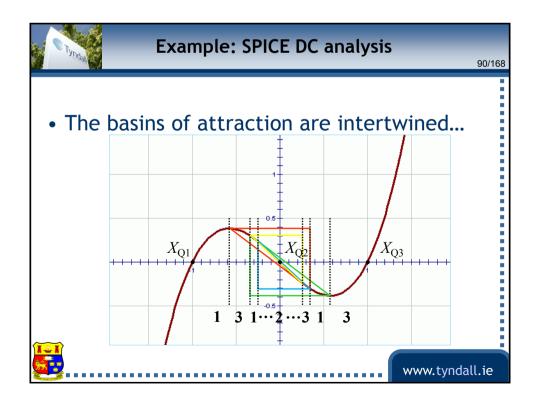
$$X[n+1] = X[n] - \left(\frac{c_1 X[n] + c_3 X^3[n]}{c_1 + 3c_3 X^2[n]}\right)$$

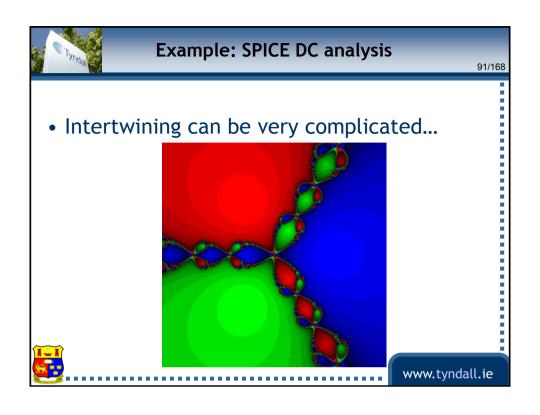
• Equilibrium (fixed) points

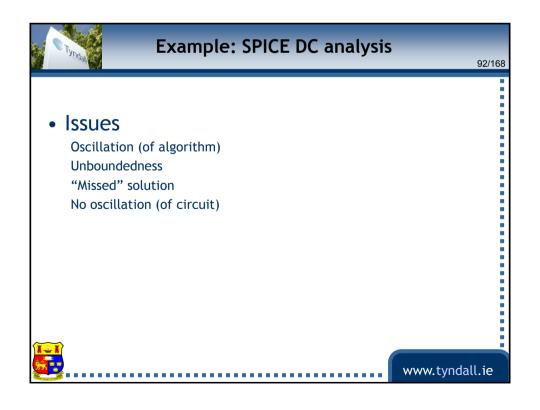
$$X_Q = 0, \pm V_{\text{max}} \sqrt{1 + \frac{1}{G_a R}}$$

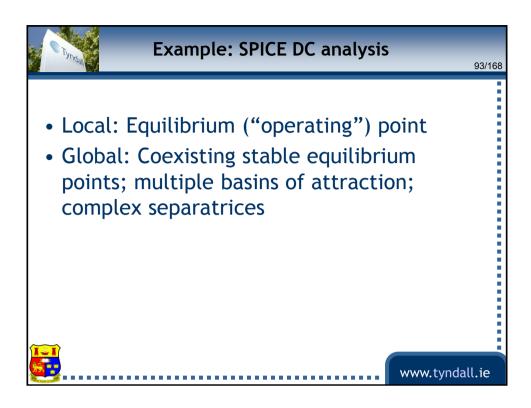


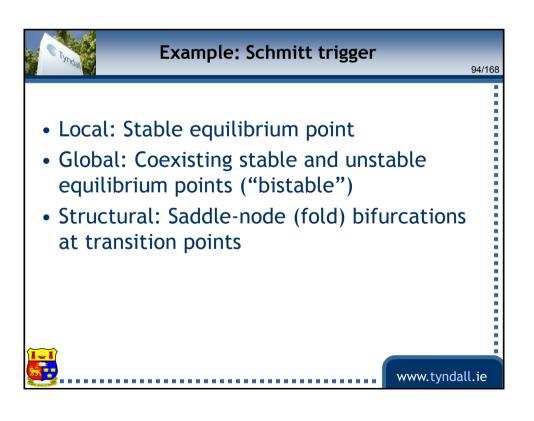


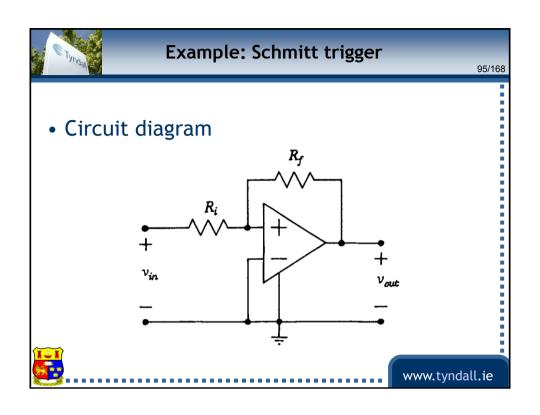


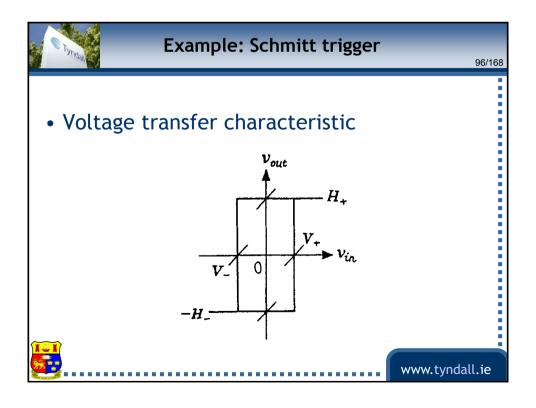


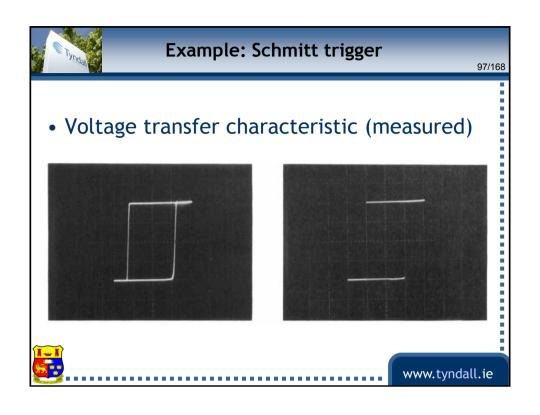


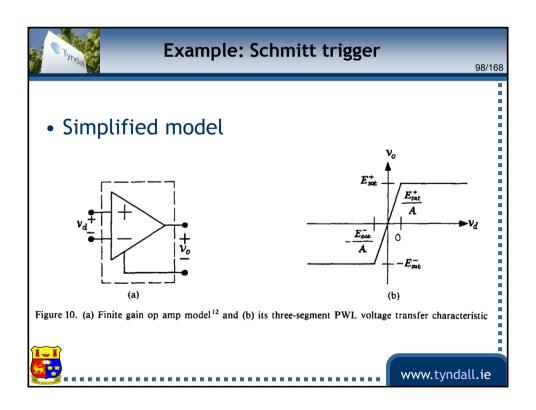


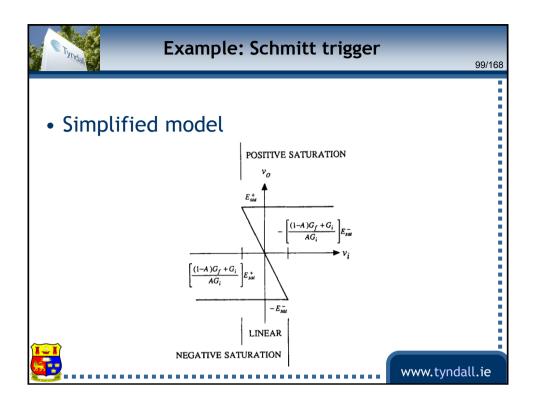


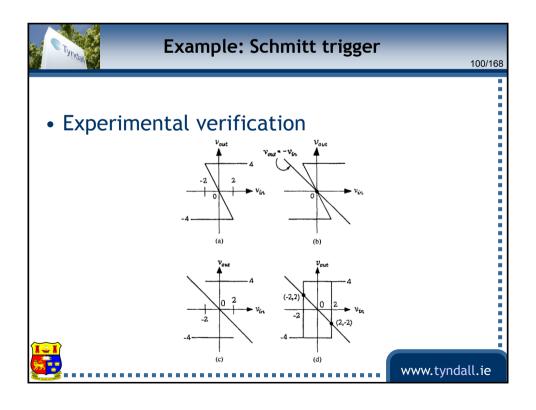


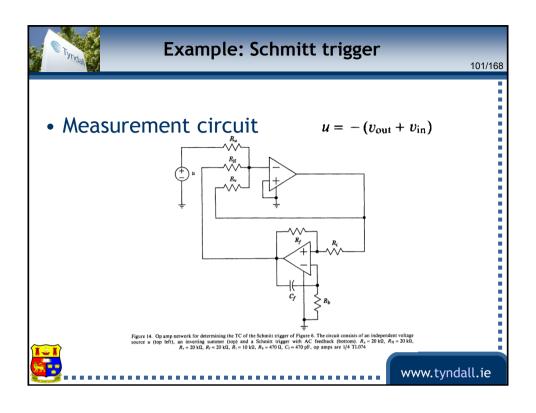


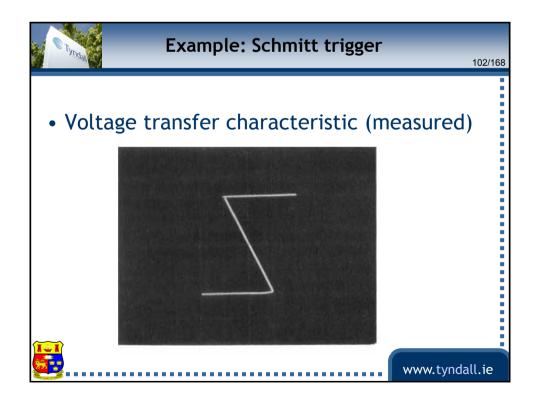


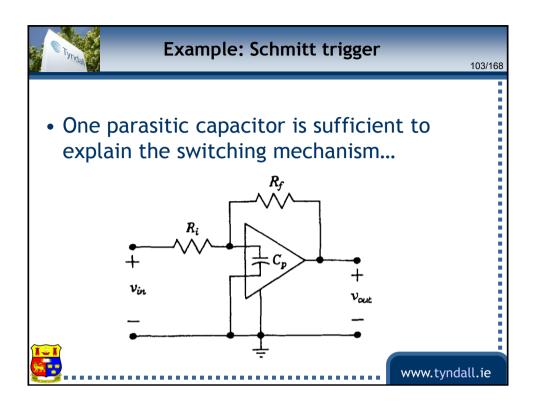


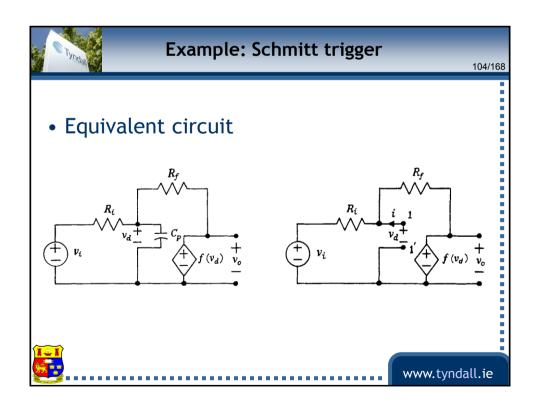


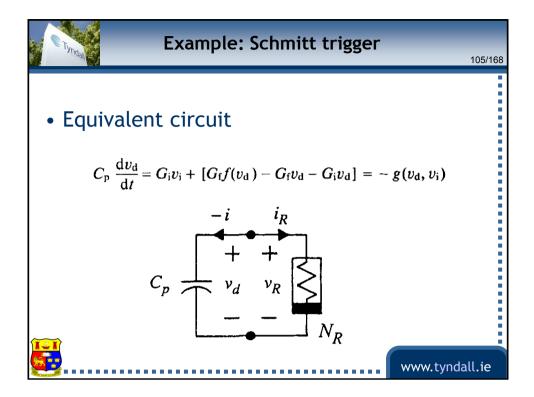


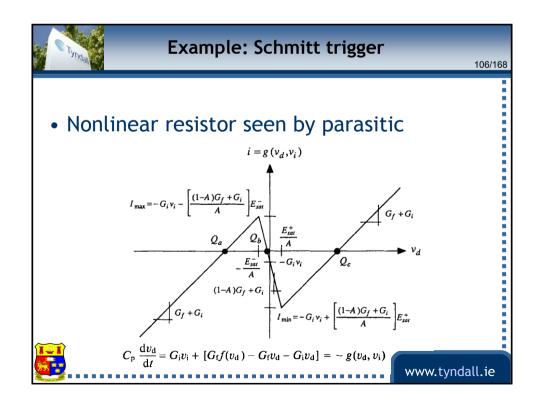


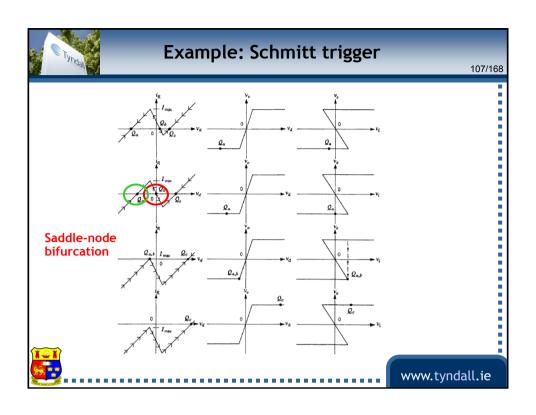


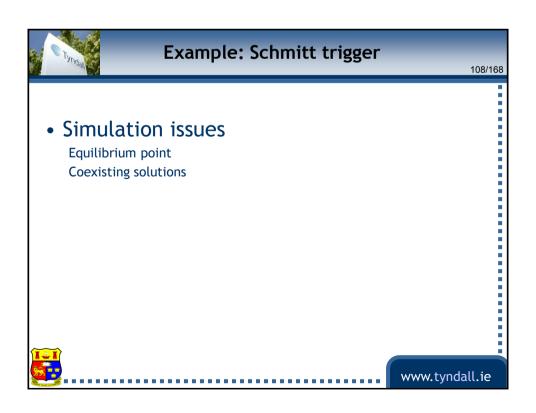












## T<sub>Vndall</sub>

### Example: Schmitt trigger

109/168

- Local: Stable equilibrium point
- Global: Coexisting stable and unstable equilibrium points ("bistable")
- Structural: Saddle-node (fold) bifurcations at transition points



www.tyndall.ie

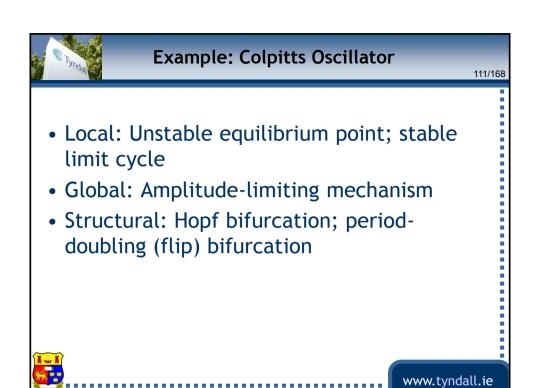


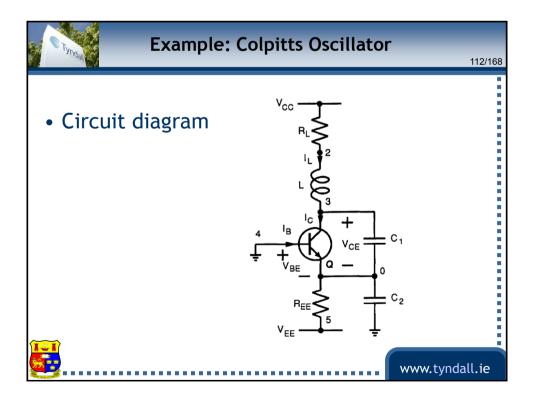
#### **References: Hysteresis**

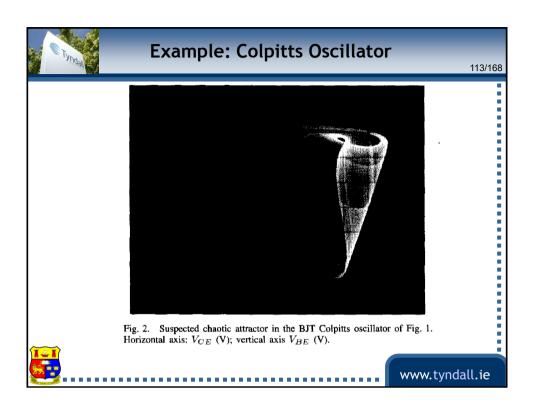
110/168

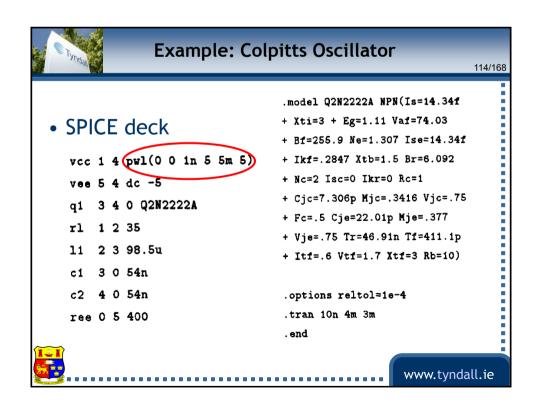
[KC91] M.P. Kennedy and L.O. Chua. Hysteresis in electronic circuits: A circuit theorist's perspective. *Int. J. Circuit Theory Appl.*, 19(5):471-515, 1991.

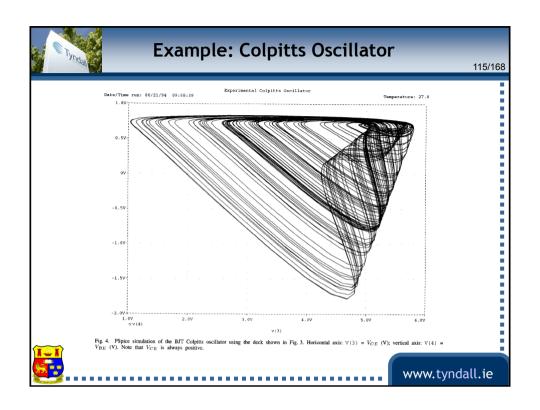


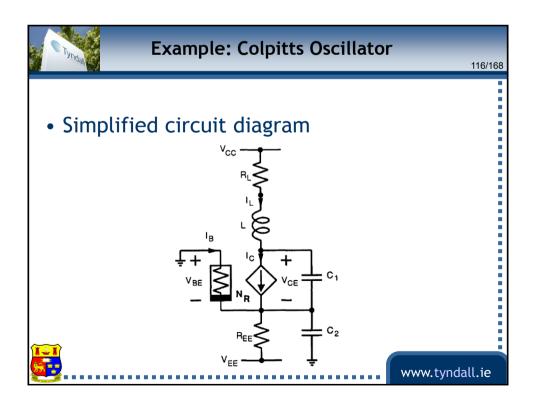














117/168

• State equations

$$C_1 \frac{V_{CE}}{dt} = I_L - I_C$$

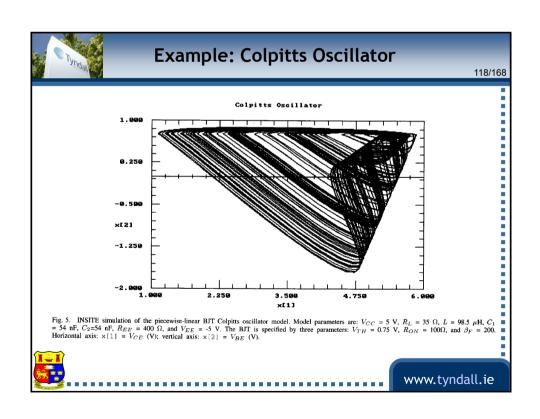
$$C_2 \frac{V_{BE}}{dt} = -\frac{V_{EE} + V_{BE}}{R_{EE}} - I_L - I_B$$

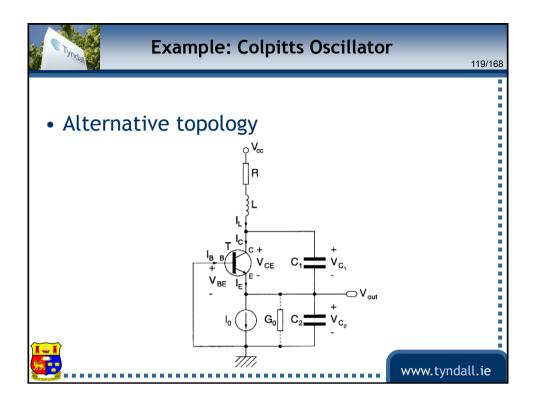
$$L \frac{I_L}{dt} = V_{CC} - V_{CE} + V_{BE} - I_L R_L.$$

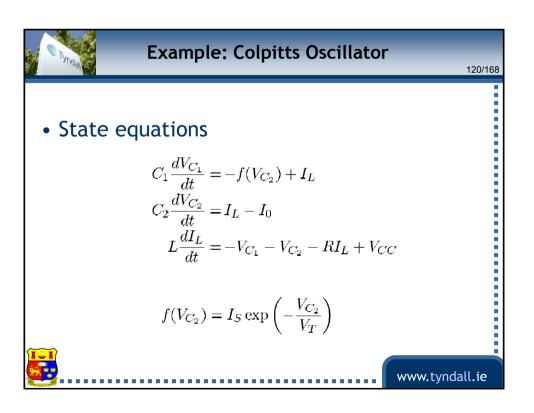
$$I_B = \begin{cases} 0 & \text{if} \quad V_{BE} \leq V_{TH} \\ \frac{V_{BE} - V_{TH}}{R_{ON}} & \text{if} \quad V_{BE} > V_{TH}, \end{cases}$$

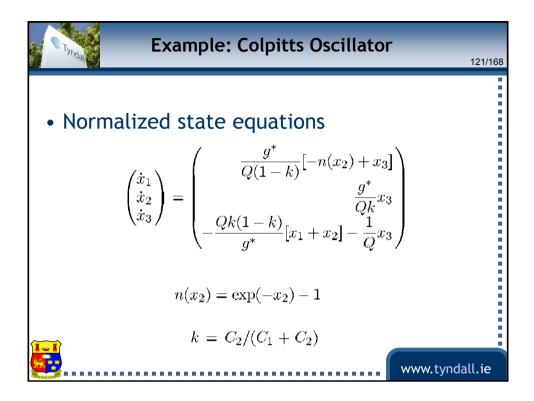
$$I_C = \beta_F I_B$$

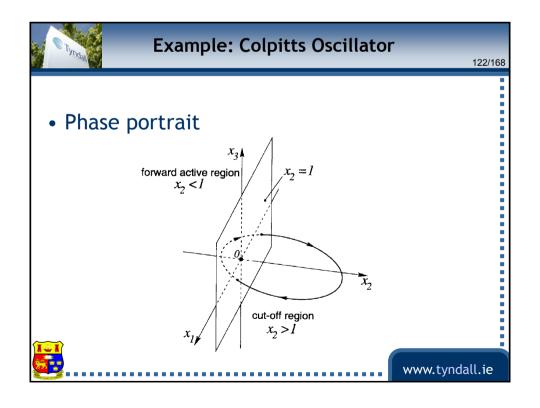


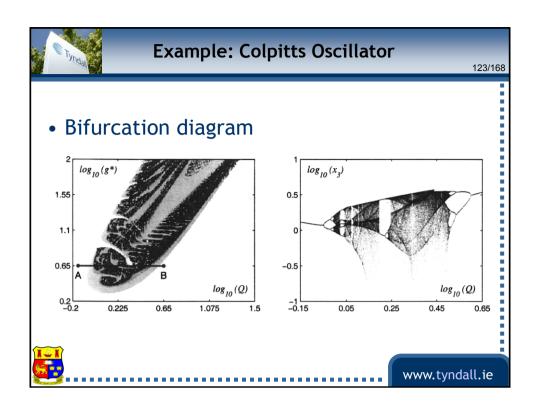


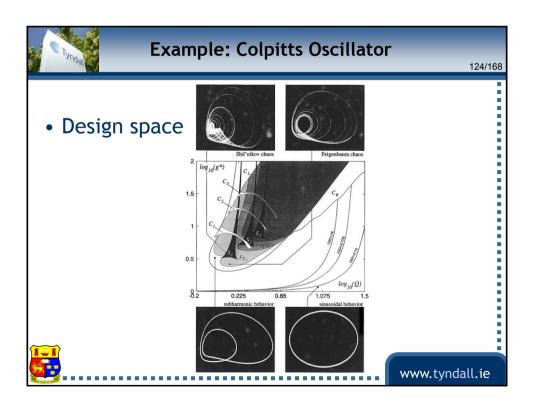


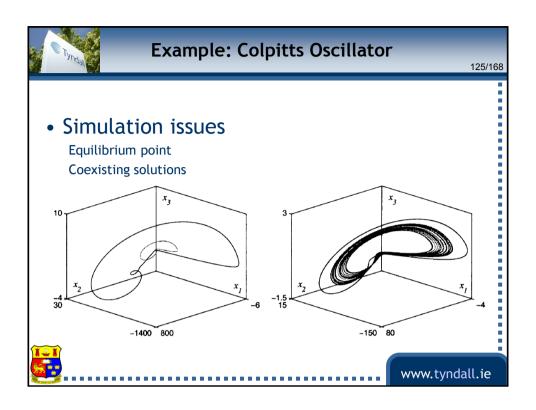


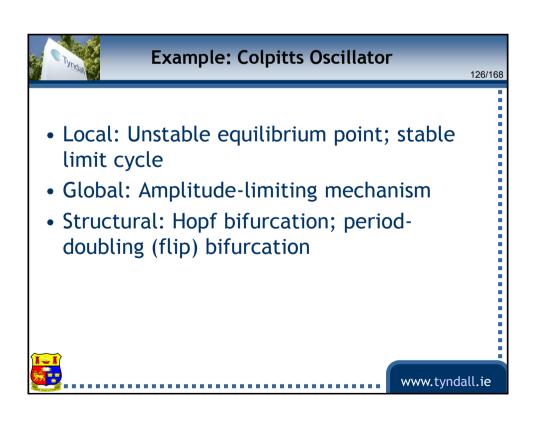


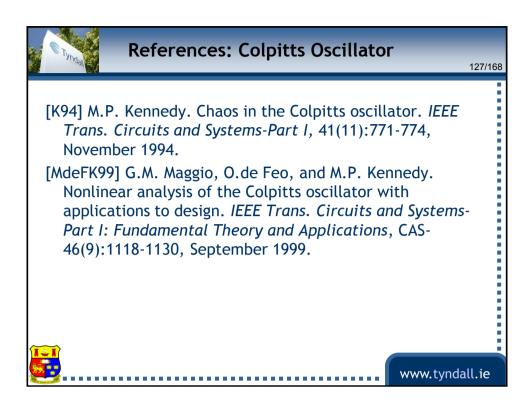


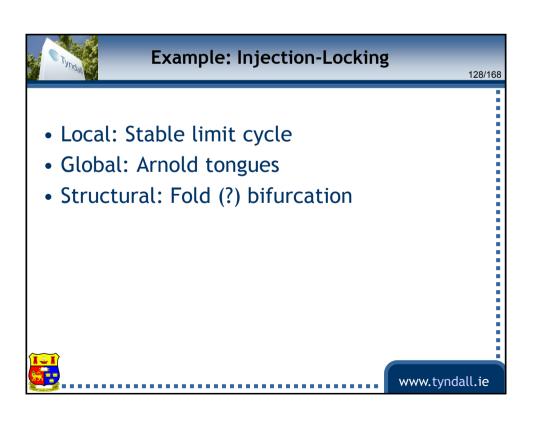


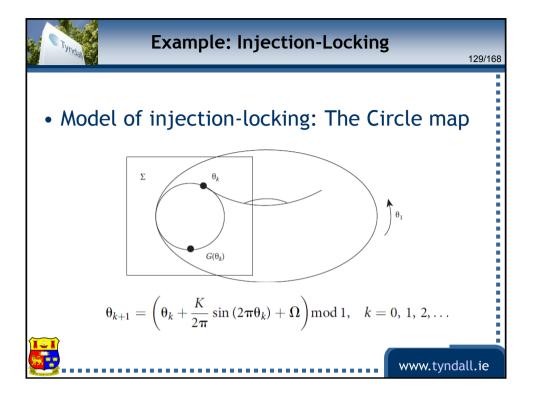


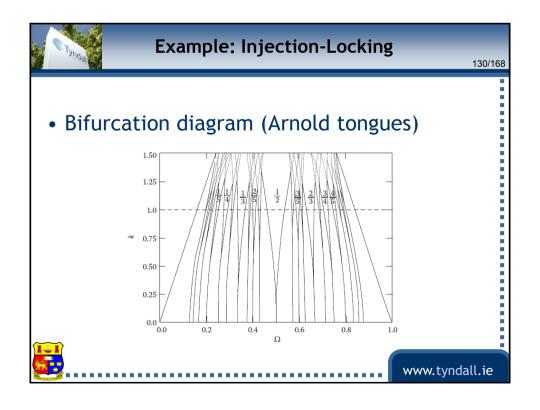


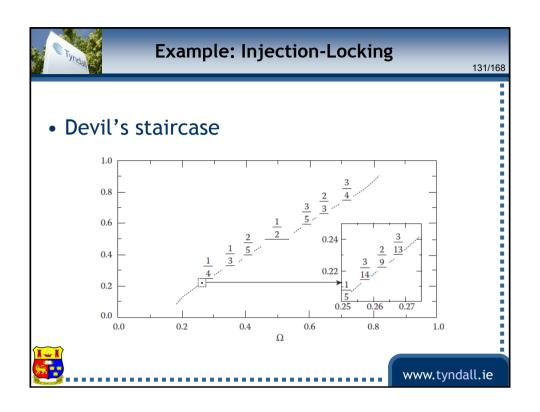


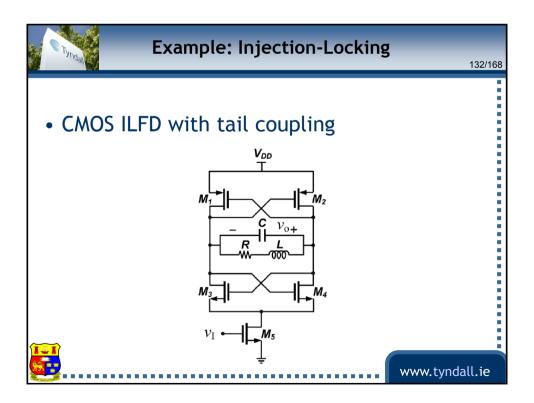


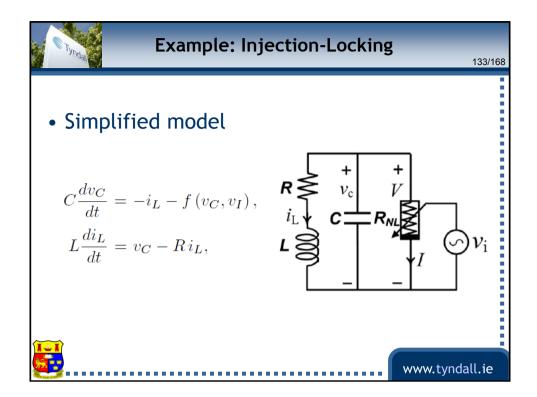


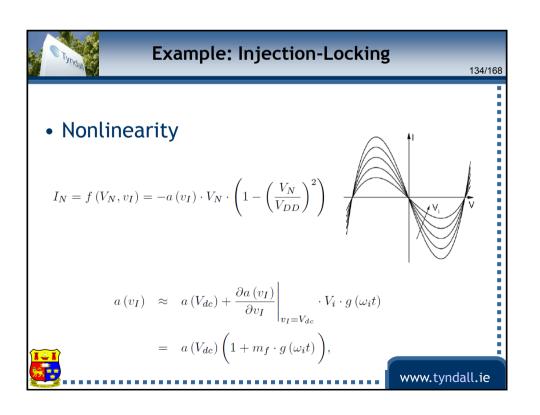














135/168

• Normalized model  $x = \frac{v_C}{V_{DD}}, y = \frac{R i_L}{V_{DD}}, \tau = \frac{t}{\sqrt{LC}},$ 

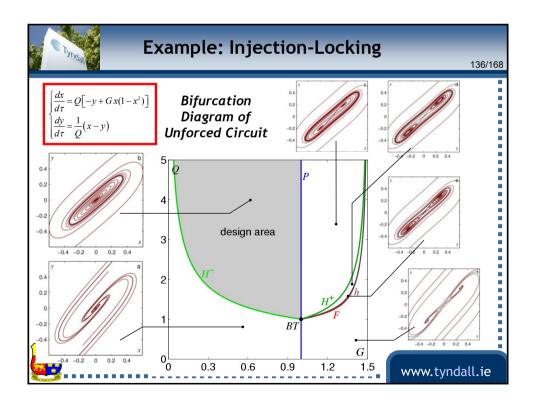
$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}, \quad G = R \cdot a(V_{dc}), \quad \omega = \omega_i \sqrt{LC},$$

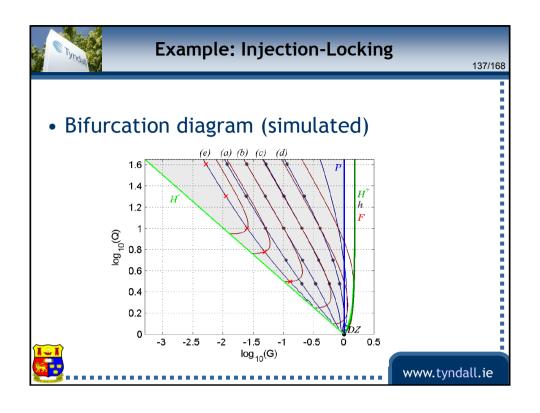
$$\frac{dx}{d\tau} = Q \left[ -y + \mathcal{G}(\tau) x \left( 1 - x^2 \right) \right],$$

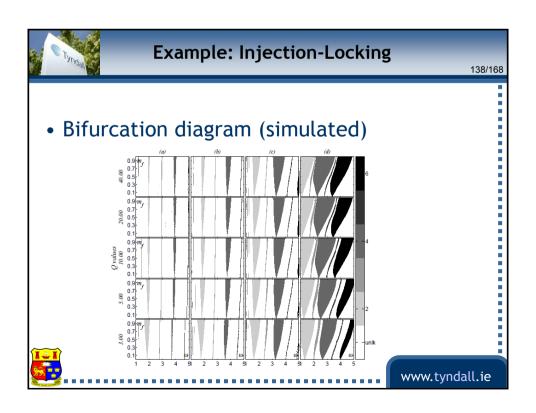
$$\frac{dy}{d\tau} = \frac{1}{Q} (x - y),$$

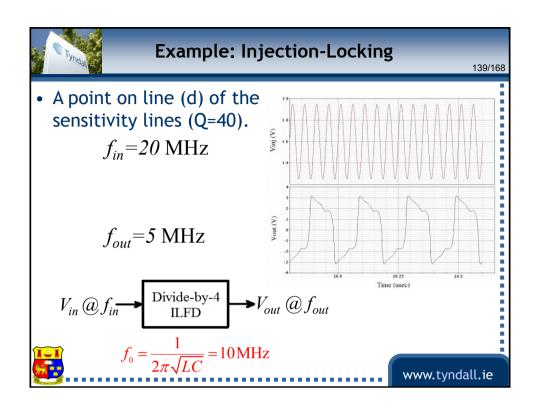


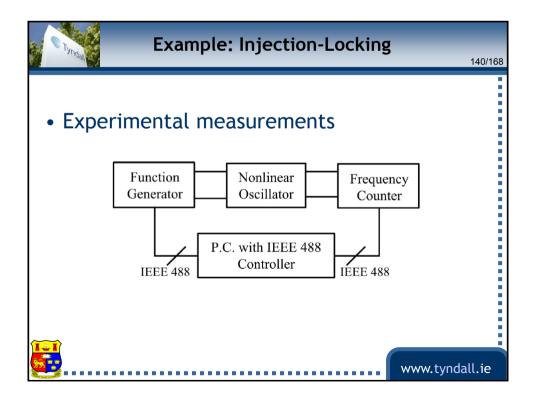
$$\mathcal{G}\left(\tau\right) = G\left(1 + m_f \cdot g\left(\omega \tau\right)\right)$$

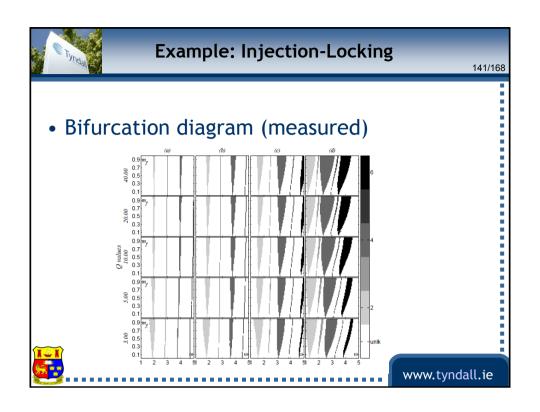


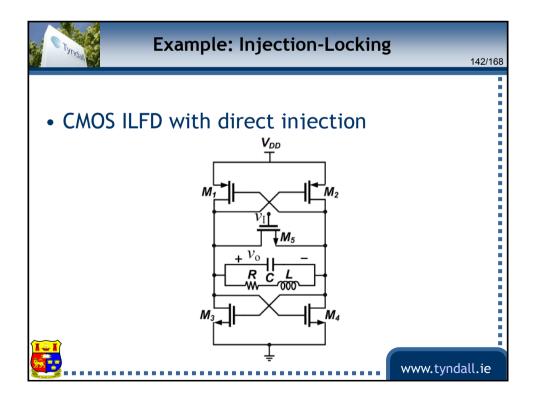


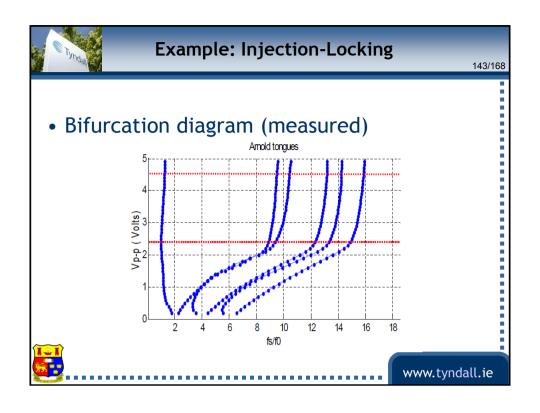


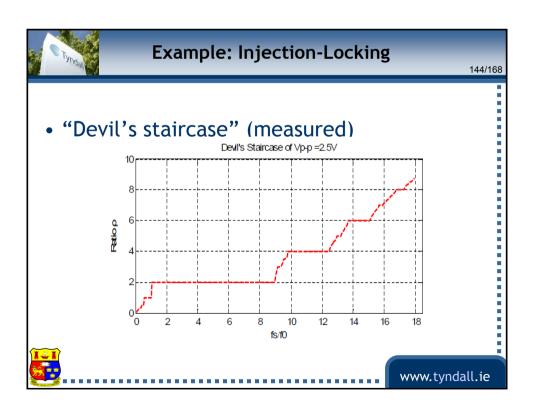


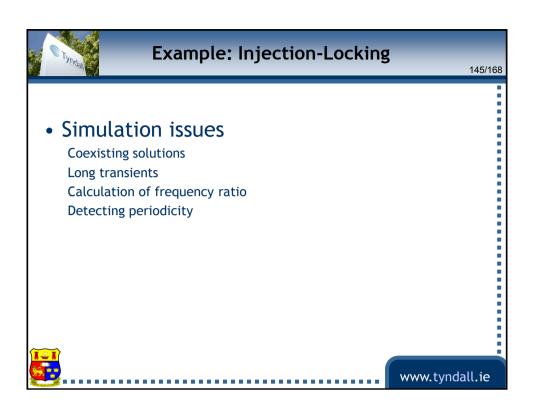


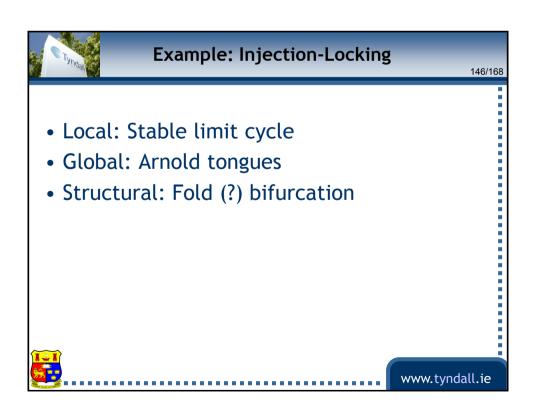














### References: Injection-Locking

147/168

[O'DKFQJ05] K. O'Donoghue, M.P. Kennedy, P. Forbes, M. Qu, and S. Jones. A Fast and Simple Implementation of Chua's Oscillator with Cubic-like Nonlinearity. *Int. J. Bif. Chaos.* 15(9):2959-2971, September 2005.

[DdeFK10] S. Daneshgar, O. De Feo and M.P. Kennedy. Observations Concerning the Locking Range in the Complementary Differential LC Injection-Locked Frequency Divider Part I: Qualitative Analysis. *IEEE Trans. Circuits and Systems-Part I*, 57(1):179-188, Jan. 2010.



www.tyndall.ie

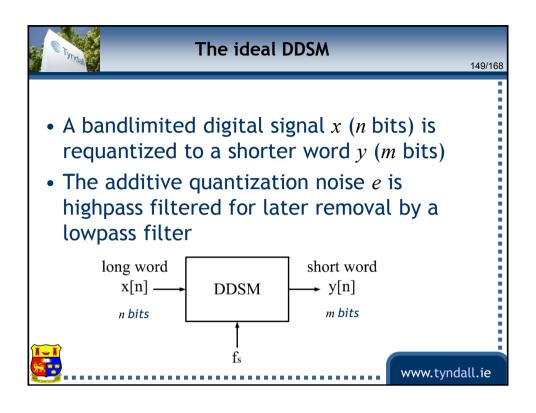


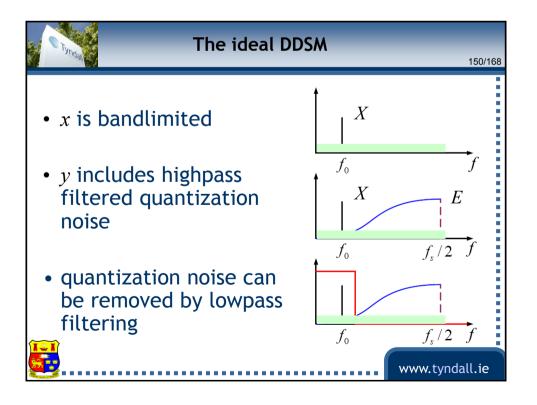
#### **Example: Digital Delta Sigma Modulator**

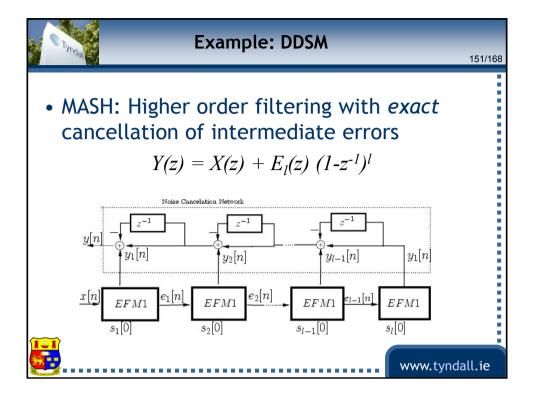
148/168

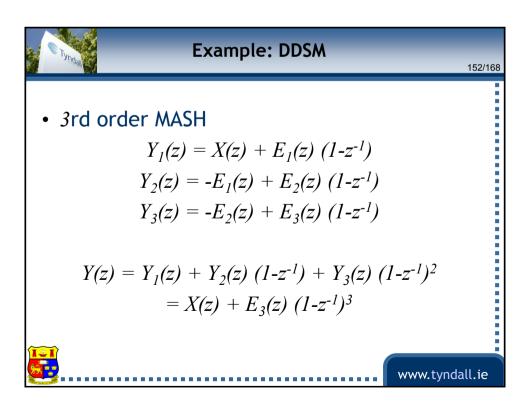
- Local: unstable equilibrium
- Global: cycles; complex basins of "attraction"
- Structural: multiple nonlinearities

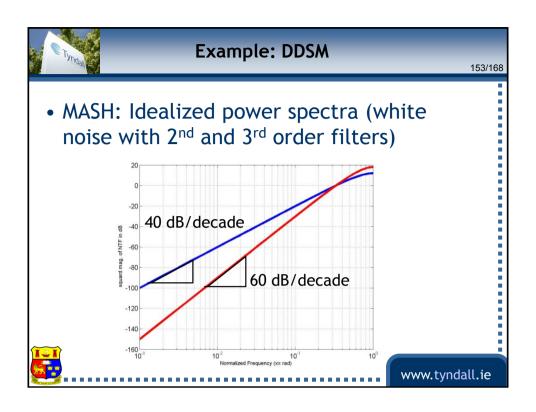


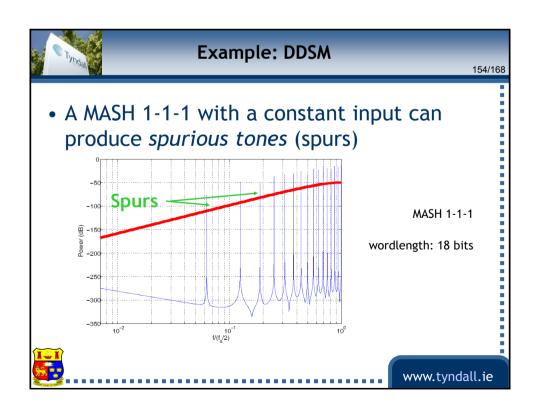








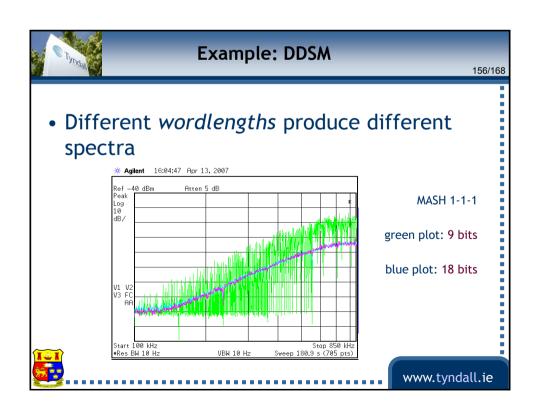


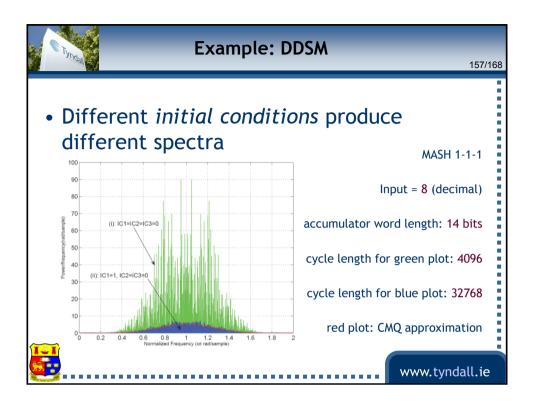


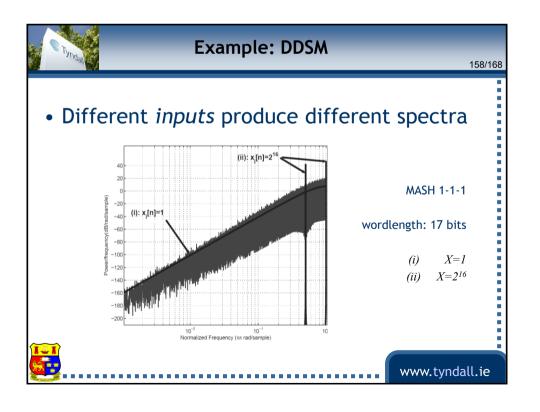


- Different wordlengths can produce different spectra
- Different *initial conditions* can produce different spectra
- Different *inputs* can produce different spectra
- All of the above can cause spurs!









## Tyndal

#### Example: DDSM

59/16

- The DDSM is a Finite State Machine (FSM)
- The FSM has a *finite* state space S (containing  $N_s$  states) and a *deterministic* rule G (called the *dynamic*) that governs the evolution of states
- The next state is determined *completely* by the current state and the input:

$$X[n+1] = G(X[n])$$



www.tyndall.ie

# Tyndall

#### **Example: DDSM**

60/16

- If the input is fixed, the most complex trajectory visits each state in the state space *once* before repeating; the longest cycle has period  $N = N_s$ -I
- In the worst case, the trajectory repeats with period N=4



### Stochastic approach

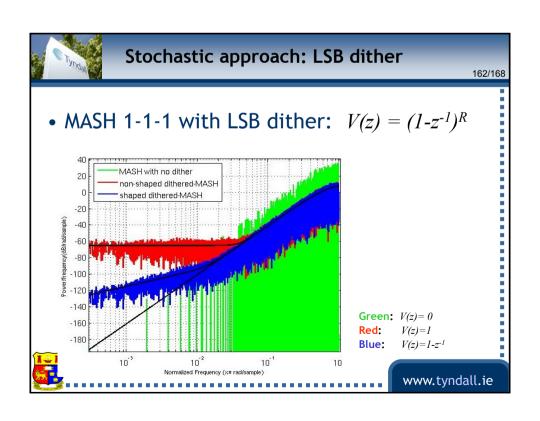
161/168

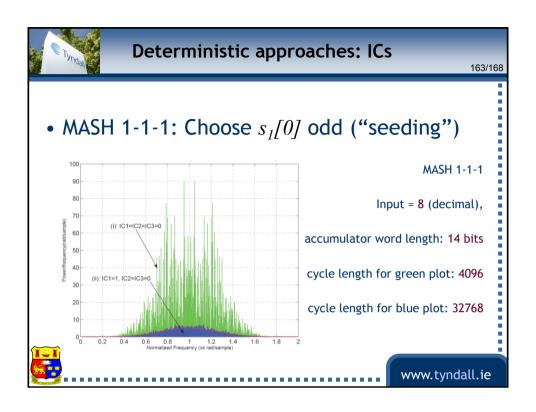
- Make the dynamic stochastic
- The next state depends on the current state s, the input x, and a random dither signal d

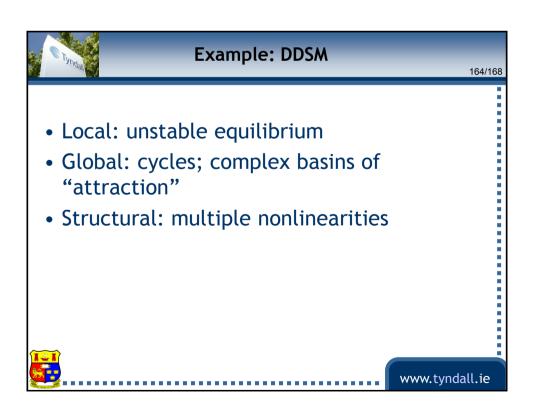
$$s[n+1] = G_S(s[n], x[n], d[n])$$

- Periodicity is destroyed
- Trajectories can be much longer than  $N_s$











165/168

[HK07b] K. Hosseini and M.P. Kennedy. Maximum Sequence Length MASH Digital Delta-Sigma Modulators. *IEEE Trans. Circuits and Systems-Part I*, 54(12):2628-2638, Dec. 2007.

[HK08] K. Hosseini and M.P. Kennedy. Architectures for Maximum-Sequence-Length Digital Delta-Sigma Modulators. *IEEE Trans. Circuits and Systems-Part II*, 55(11):1104-1108, Nov. 2008.

[HK11] K. Hosseini and M.P. Kennedy. *Minimizing Tones in Digital Delta-Sigma Modulators*. Springer, New York, 2011.



www.tyndall.ie

### Tyndall

### Summary

166/168

• Part 2: Examples

SPICE DC analysis (intertwined basins of attraction) Schmitt trigger (saddle-node bifurcation)

Colpitts oscillator (Hopf bifurcation)

Injection-locking (Arnold tongues)

DDSM (coexisting solutions)





