S-NET One Year in Orbit:

Verification of a Narrowband Nanosatellite Network

<u>Siegfried Voigt</u>¹, Zizung Yoon², Walter Frese², Klaus Briess²

¹ German Space Administration ² Technische Universität Berlin

Content of the presentation

- Introduction and overview of involved partners (DLR and Technische Universität Berlin)
- Nanosatellite Mission S-Net
- Possible Applications with nanosatellite networks
- Future technology developments

German Aerospace Center (DLR)

- Aeronautics
- Space Research and Technology
- Transport
- Energy
- Defence and Security
- Space Administration
- Project Management Agency

Approx. 8000 employees across 36 institutes and facilities at 20 sites. Offices in Brussels, Paris, Tokyo and Washington.

DLR's tasks as the National Space Agency (Administration)

- Defining German space planning on behalf of the federal government
- Representing German space-related interests in the international arena, in particular in ESA
- Tendering, award and support of space projects in the context of the National Space Program
- Annual budget: app. 300 M€
- Approx. 280 employees
- Annual budget in satellite communications: 35 M€
- 22 employees

Structure of the German Space Program

	ESA	NP	DLR	Other	
	ESA programs, EUMETSAT	National program	DLR / Helmholtz Association (HGF) R&D programs	EU, BMBF programs, German Research Foundation (DFG), universities, Fraunhofer Society (FhG), HGF, Max Planck Society (MPG), public bodies, industry	
Application	Satellite Communications Navigation Earth observation				
Technology	Space transport Space station Technology of space systems				
Research	Research under space conditions Space exploration				

Technology Developments for Satellite Communication Communication

Multimedia Development and Demonstrations Programm COMED

Payload technologies

Platform technologies

Satellite systems

COMED NG2004-today2011-2021

COMED

1999-2004

German Prime Roles in Satellite Communications

Commercial EDRS Service (European Data Relay Satellite)

Space Technology at Technische Universität Berlin

Education in space technology

Practical Experience

Miniaturization and Standardization

Theory and "Hands-on" in space robotics

Theory and "Hands-on" in satellite technology

Theory and "Hands-on" in space propulsion systems

Small Satellites at Technische Universität Berlin

The Chair of Space Technology at TU Berlin currently operates 9 satellites

Small Satellite History at TU Berlin

SatCom Network

Intersatellitelink (ISL) Applications

Rapid S/C commanding and response

Figure: Constellation optimization of Earth observation by "Rapid Response Imaging"

Source: Nag. S,, Scheduling for rapid response imaging using agile, small satellite constellations, IAA 2017 Berlin

M2M / IoT communication

Low latency (LEO 30ms vs GEO 550 ms)
 Autonomous driving
 Road trains

Low-rate applications
Tracking of mobile targets (railroad)
Monitoring of remote sites (off-shore wind farms)

•Global internet

•OneWeb: Ku / Ka, 50 Mbps, 30 ms •Starlink: Ku / Ka, 1 Gbps, 25 ms •LTE: 300 Mbps, 50 ms

On-Orbit Servicing / proximity operations

- Communication between servicer (roboter) and target
- Repairing and refueling of commerical satellites
- Space debris removal at EoL

artist impression of DEOS [DLR 2010]

S-NET Objectives

demonstrate multipoint ISL with S-band transceiver

Mission statement: "Demonstration of inter satellite communication within a nanosatellite network" verify the newly developed / optimized ISL communication protocols

analyze the stability of a nanosatellite formation

demonstrate the feasibility of nanosatellites as a base for demanding communication missions

Satellites	4	
Satellite mass	8.7 kg	
Satellite size	25 x 25 x 25 cm3	
Power (nominal)	< 4.5 W	
Orbit	SSO < 600 km	
Launch	Soyuz / Fregat via Dispenser	
Payload	S-band transceiver, Laser reflector	
Launch	Feb. 1 st 2018	
Design lifetime	1 year	

SLink Radio (S Band)

Parameter	Value		
Range ISL	100 km nominal, up to 800 km		
Bit rate DL	0.674 3.394 Mbps		
Bit rate UL	30.8 252 kbps		
	8.8 126.55 kbps		
Bit rate ISL	(DBPSK, 800 km /		
	8-ADPSK, 100 km)		
Symbol rate ISL	80 kHz		
Multipleving	TDD / P2P,		
	store and forward M2M		
	DBPSK, DQPSK,		
Modulation ISL	8-ADPSK, 16-ADPSK (option)		
	Adaptive modulation and coding		
Modulation UL/DL	BPSK, QPSK, 8-PSK, 16-QAM		
Doppler correction	>50 kHz		
Coding	convolutional $r = 1/2$, $r = 3/4$		
Decoder	Viterbi, soft decision		
RF output / Power	27 dBm / <12 W		
Mass	< 450 gramm with housing		
Volume	140×80×65 mm3		

Figure: Components. Modular PCB design.

Figure: SLink has been developed in cooperation with IQ wireless Ltd.

Antenna Configuration

- 1 x circular polarized planar S-band antenna on each side of the satellite with ~6 dBi gain
- Signal can be transmitted to every direction independent of satellite's orientation

Deployment Sequence

- S-Net is a demonstration mission
- Relatively short ISL experiment times were required (few months); a passive orbit control was selected:
 - Reduces mission costs,
 - Faster development process,
 - Reduces requirements on attitude determination and control
- Relative distance drift during mission depends on separation parameters from upper stage

Single Nanosatellite Launcher (SNL)

Deployment Sequence

- Launcher (Soyuz/Fregat) requirements:
 - Cross-track deployment,
 - 3-axis stabilization of the upper stage during separation within 0.5°,
 - 10 s between separation pulses
 - Separation sequence #1, #3, #2, #4 for mitigation of collision probability.
- Dispenser requirement (by Astrofein Ltd):
 - Angular misalignment: <1°,
 - Differences in magnitude of separation vectors < 4.5 cm/s (1σ) @ 1.4 m/s
- Collision probability: 0.2%

Status Mission Operation

Relative Distances

- Requirement for ISL: < 400 km for 4 month
- Status:
 - < 235 km after 350 days
 - Sufficient SNR to perform ISL in 2019

Figure: Measured (signal propagation) and propagated (space radar) distances between satellites

TDD Frame Structure

- Symbol frequency: 80 kHz
- Frame length: 10 milliseconds
- Assumed BER: 10e-5
- User data packets (CCSDS' Proximity-1 PLTUs) being partitioned on the Data link layer, acknowledged and combined to PLTUs again
- TDD packet lengths and AMC thresholds optimized for a BER of 10e-5 because of ARQ

Synchronization

- Both transceivers involved in a P2P session must be synchronized before any user (payload) data can be exchanged
- Automatic gain control (AGC)
 - Responder increases RX gain setting (AGC sweep) and tries to detect the preambles sent by the caller, if a preamble is detected it begins to transmit answers to the caller module,
 - Caller increases RX gain setting (AGC sweep) and tries to find the preambles sent by the responder module,
 - After a SYNC is achieved, few further TDD frames needed to set modulation and coding (ACM) and to switch the RF channel (optional); after this data services can be performed
- Antenna search algorithm (ANS)
 - Additionally to the RX gain setting the six antennas will be switched
- TDD frame length: 10 milliseconds
- Caller's AGC sweep time: ~320 milliseconds
- Responder's AGC sweep time: ~800 milliseconds
- AGC synchronization time in 90% of the cases: < 1.5 seconds
- AGC+ANS synchronization time in 90% of the cases: < 3.5 seconds

Figure: Cumulative distribution function for the synchronization time

Session Timing

- 1.Caller starts transmitting (hailing).: TX on flag (TxOn)
- 2.Both modules get synchronized: Session established flag (SesEst), modulation, coding and channel are selected.
- 3.Data transfer begins (payload bytes only shown: 4096)
- 4.All bytes are transmitted (caller), received (responder) and acknowledged (responder). RX complete flag (RxCmpl)
- 5.Session is closed (handshaking by both modules)

ISL Link Budget

Parameter	#1	#2	#3
Frequency (MHz)	2266	2266	2266
TX power output (dBm)	27	27	
TX losses (dB)	1.5	1.5	
TX antenna gain (dBi)	0	0	
Distance (km)	10	65	148
RX antenna gain (dBi)	0	0	
RX losses (dB)	1.5	1.5	
RX sensitivity (dBm)	-116.50	-116.50	
Roll-off faktor	0.25	0.25	
Symbol rate (kbit/s)	80	80	
RX noise factor (dB)	3.5	3.5	
Link budget (dB)	140.50	140.50	
Free space path loss (dB)	119.55	135.81	
Margin C/N (dB)	20.96	4.69	7.56

ISL Link Budget

Parameter	#1	#2	#3
Frequency (MHz)	2266	2266	2266
TX power output (dBm)			27
TX losses (dB)			1.5
TX antenna gain (dBi)			5
Distance (km)	10	65	148
RX antenna gain (dBi)			5
RX losses (dB)			1.5
RX sensitivity (dBm)			-116.50
Roll-off faktor			0.25
Symbol rate (kbit/s)			80
RX noise factor (dB)			3.5
Link budget (dB)			150.50
Free space path loss (dB)			142.95
Margin C/N (dB)	20.96	4.69	7.56

Operational Scenarios

- Network topology is determined by orbital configuration
- 1) Access via competition
- ALOHA protocol
- 2) Access via allocation
- Token passing (decentralized)
- Polling (centralized)
- 3) Access via reservation
- TDMA

- ISL communication in short P2P sessions organized
- Multi-Hop: Store-and-Forward principle
- Proactive Routing
- •ISL protocol successful verified

S-NET for M2M use case demonstration

Precision GPS

Maritime Containers Tracking

Banking ATM

Oil & Gas

Water Irrigation

Management

LEO Narrowband

M2M

S-NET S-band ISL 100 kbps Medium latency

Applications for Nanosatellite Networks

- Advantages using small satellites:
 - 1) Cheaper (low cost) to build and launch
 - 2) Low power and smaller antennas (due to LEO)
- Disadvantage: only one or two contacts per day, constellation of more than 40 up to several hundred satellites necessary
- S-Band with 30 MHz bandwidth enables transmitters in the size of a credit card
- (Global) Connectivity (from "always-on" to "one time per day") depends on the applications
- Internet of Space (satellite networks) can bring the Internet of Things everywhere on earth

Small Satellite technology serves as a key enabler for new services to transform IoT connectivity across industry sites and geographical and political borders

SALSAT (Spectrometer Analysis Satellite)

Mission objectives:

- Spectrum Analysis (VHF, UHF; S band)
- Creation of a global heatmap for spectrum use
- Detection and location of interferences

Mission parameter:

- TUBiX10 Bus & SNL
- Mass: approx. 18 kg
- Orbit: 410 630 km
- Type: Non-SSO, inclination > 60°
- Lifetime: > 1 year

SALSAT (Spectrometer Analysis Satellite)

Current status:

- Mission concept
- PDR (10/2018)
- Launch contract signed
- Payload development
- Subsystem testing 2019
- CDR 2019
- Launch in 2020

From S Link to X Link

S Band ISL Transceiver

X Band ISL Transceiver

X Link X Band (8 GHz) SDR high speed data links FDD, full duplex BPSK, QPSK, FEC Down: 25 Mbps (to 100 Mbps) Up: 64 kpbs

From RF to Optical Communication

- World's smallest Laser Communication Terminal
- Laser Communication Terminal for CubeSats
- Size of only 1x1x0.3U (~10x10x3cm³)
- Mass of about 350 gram
- Data rate of 100 Mbit/s
- Successful CDR für CubeL
- In-Orbit Verification planned in 2019

Thank you for your attention!

Supported by:

on the basis of a decision by the German Bundestag