

Spectrum Sharing and Spectrum Efficiency

15 January 2018

Dr. Keith D. Gremban, Director Frank Sanders, Senior Technical Fellow Institute for Telecommunication Sciences (ITS) National Telecommunications and Information Administration (NTIA)

Institute for Telecommunication Sciences (ITS)

- The Institute for Telecommunication Sciences (ITS) is the U.S. government's premier telecommunications laboratory
 - Located in Boulder, Colorado
 - 100-year history of telecommunications research
- ITS mission:
 - Perform the research and engineering that enables the U.S. Government, national and international standards organizations, and many aspects of private industry to manage the radio spectrum
 - Ensure that innovative, new technologies are recognized and effective
 - Serve as a principal Federal resource for solving the telecommunications concerns of other Federal agencies, state and local governments, private corporations and associations, and international organizations

DoC Laboratories in Boulder, CO

Spectrum Demand

• Demand for radio frequency spectrum is exploding

- Proliferation of wireless devices
 - In 2014, Americans used 4.1 terabytes of data over 355.4 million cellular devices¹
 - 69% of adults access the Internet on a smartphone²
 - Nearly half of U.S. homes have only cellular phones³
 - By 2019, 11.5 billion "smart" devices will connect to mobile networks ⁴
- Increasing demand for bandwidth hungry data such as video
 - Standard definition -> high definition -> 4K
- But, spectrum is a physically limited asset
 - Exclusive rights to spectrum is not sustainable
 - Spectrum sharing is the new reality

¹<u>http://www.ctia.org/your-wireless-life/how-wireless-works/annual-wireless-industry-survey</u>

²<u>http://www.leichtmanresearch.com/press/120315release.html</u>

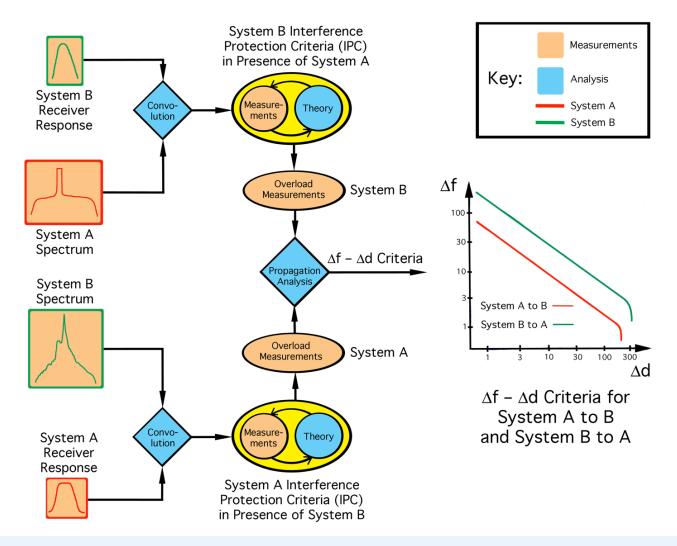
³http://www.cdc.gov/nchs/data/nhis/earlyrelease/wireless201512.pdf

⁴<u>http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html</u>

U.S. Objectives for Spectrum

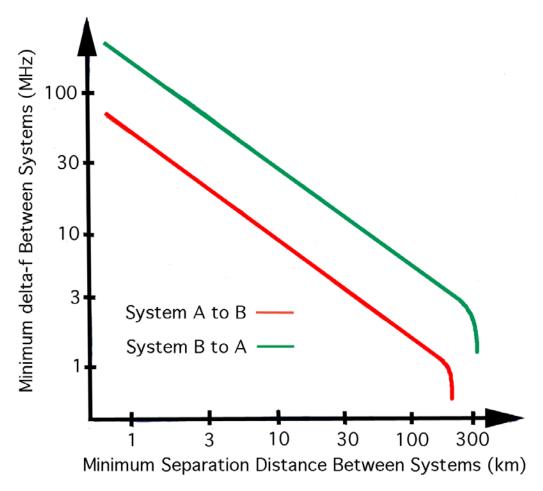
- Unleashing the Wireless Broadband Revolution Presidential Memorandum 2010
 - Make available 500MHz of Federal and non-federal spectrum by 2020
 - Ensure no loss of critical existing and planned government capabilities
 - E.g., national security, emergency communications, aviation, maritime, weather, ...
- Sharing is required to meet the objectives
 - Between Federal and non-federal systems
 - Across combinations of space/time
 - Dynamically
- Sharing is a *strategic imperative*
 - Exclusive use of spectrum will be the exception in the future

Spectrum Sharing


Four Basic EMC Analysis Pieces Needed

- Emission spectra for both systems
 - OOB and spurious levels as measured in the respective systems' receiver bandwidths
- Receiver selectivity for both systems
- Interference protection criteria for both systems
 - Requires interference-effects measurements, modeling, or both.
 - Needs to be done in terms of either I/N or S/(I+N), as appropriate.
- Overload characteristics of receivers
 - Only needed if either system can put overload power into the other system's front end

Use Those Pieces to Draw $\Delta f - \Delta d$ Curves



$\Delta f - \Delta d$ Curves Determine Coordination Criteria

- The most restrictive
 Δf – Δd curve determines coordination
- In this case,
 System B to
 System A

Case Study: 5 GHz Dynamic Frequency Selection (DFS)

- In the late 1990s
 - Perception that some spectrum used by radar was underutilized
 - Unlicensed National Information Infrastructure (U-NII) developed to share spectrum with incumbent radar systems
 - 5250-5925 MHz band was selected in U.S.
 Primary focus: FAA Terminal Doppler Weather Radars (TDWRs)
- The basic idea:
 - U-NII Rxs would detect radar signals and not operate in those frequencies
 - Radars would have primary allocation status; U-NII systems would operate on a not-to-interfere basis
 - Prior to commencing operation, a U-NII would verify that no signals were present on a candidate frequency
 - If, during operation, a radar signal was detected on the same frequency, the U-NII system would vacate that frequency and shift to another

5 GHz DFS Spectrum-Sharing Experience

- Deployment: Reports of interference to radars began in 2008-09
- NTIA and FAA spent a year identifying the cause(s) and finding technical solutions
- Problems identified:
 - Some test-and-certification protocols needed improvement
 - Some deployed DFS devices were accidentally set up with DFS functionality disabled (non-USA country codes activated by users)
 - DFS device emission spectra needed to be measured (none had been available when DFS was being devised)
 - Using those spectra, criteria had to be developed for the amount of off-tuning needed when radar signals were detected
- Frequency-distance separation criteria were established: 30 MHz of offtuning for DFS devices within 35 km of FAA weather radars.

J.E. Carroll, G.A. Sanders, F. Sanders, R.L. Sole, "Case Study: Investigation of Interference into 5 GHz Weather Radars from Unlicensed National Information Infrastructure Devices, Part 3," NTIA Technical Report TR-12-486.

Lessons Learned: 5 GHz DFS Spectrum-Sharing

- Don't underestimate challenges of developing new & untried spectrum sharing technology
- Challenges include technology, funding, and time
- Development time-scale can be years (like, 5-10)
- Test-and-certification of spectrum sharing approach needs adequate resources (funding and staffing)
- Verifying proper functionality of a new sharing approach requires significant time and funding
- Some interference problems are probably unavoidable when any new, non-trivial spectrum-sharing technology is deployed
- Allow for funding and staffing to resolve interference when it occurs

Spectrum Efficiency

Definition of Spectrum Efficiency

- 53 years of spectrum efficiency studies¹
- Minimization of spectrum blocking is the starting point for spectrum efficiency
- Basic spectrum efficiency metric: Ratio of (effective spectrum use) to (blocked frequency bandwidth × blocked space × blocked time)

 $\xi = \rho / (b \times s \times t)$, where ξ is spectrum efficiency ρ is useful throughput b is bandwidth blocked s is space (volume) blocked t is time blocked

• Consensus emerging to only compare efficiency of like systems ^{2, 3, 4}

¹ F. H. Sanders, K.E. Davis, and K.D. Gremban, "A 53-Year History of Spectrum Efficiency Studies and Recommendations for Future Work," NTIA Report 18-530 ² International Telecommunications Union Radiocommunication Sector (ITU-R), "Definition of Spectrum Use and Efficiency of a Radio System," Recommendation ITU-R SM.1046-2, Geneva, May 2006.

³ Commerce Spectrum Management Advisory Committee, Working Group 1 (CSMAC WG-1), "Definitions of Efficiency in Spectrum Use," October 2008. ⁴ Federal Communications Commission (FCC) Technological Advisory Council, Sharing Work Group, "Spectrum Efficiency Metrics," FCC Whitepaper, Washington, DC, Sep. 2011. https://www.fcc.gov/oet/tac/2011

Quality of Experience (QoE)

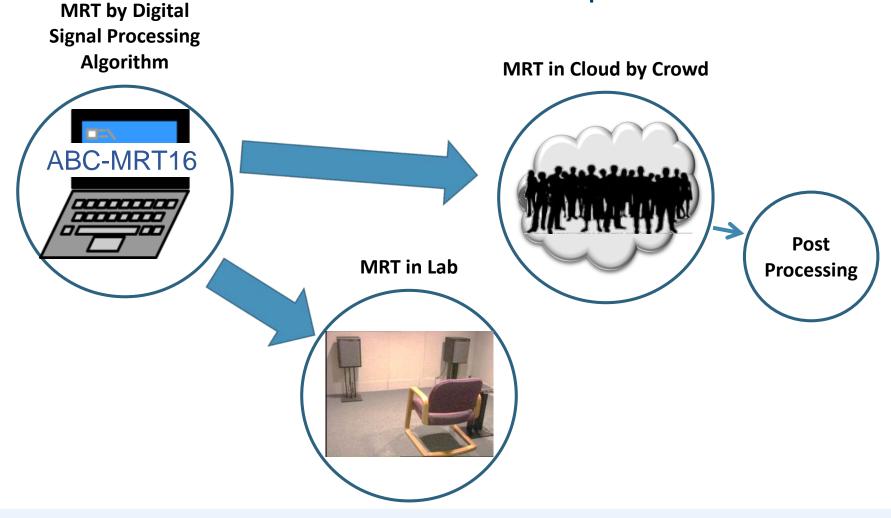
Engineering Metrics Must Be Linked to QoE

- "I need at least 80% of my customers to rate this good or excellent."
- "To do my job, I need usable images least 99% of the time."
- "I need to understand at least 95% of the words."

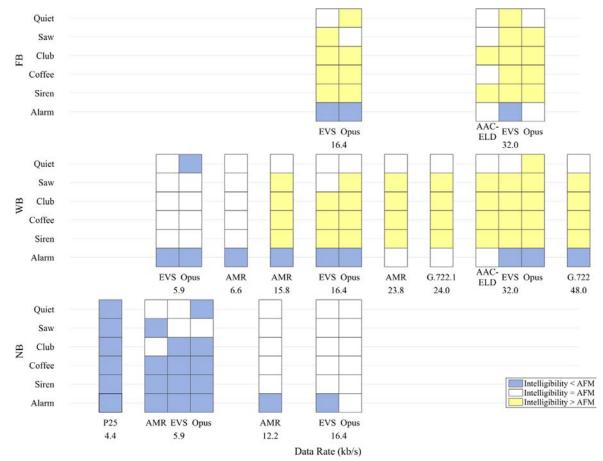
- "I need at least -90 dBm"
- "I need least 8 dB C/I"
- "I need 16 kbit/sec and less than 5% BER"



One Tool - Modified Rhyme Test (MRT)


- Speech samples
 - Phonemes in the English language
 - Transmit through radio system
 - Inject different levels and type of noise
- Panel of subjects
 - Every trial classified as "success" or "failure"
 - Calculate average success rate
- MRT Intelligibility Score (range 0 to 1)

Varied and Abundant Toolkit, More Tools in Development



Speech Intelligibility Evaluation

• Speech intelligibility linked to bitrate and noise level

S.D. Voran, A.A. Catellier, "Speech Codec Intelligibility Testing in Support of Mission-Critical Voice Applications for LTE," NTIA Technical Report TR 15-520.

Questions?