Internet of Things (IoT) from Satellites, Now and the Future

Eric Butte
Helios Wire Corporation
CTO
Overview

- The emphasis with satellites today are real time low latency systems which have also accomplished custom M2M services (the predecessor to IoT).

- The Big LEOs in the 2000s focused on real-time voice circuits and leaving video and data to the geostationary systems.

- Today with VoIP, video-over-IP, OTT streaming, and IoT all on an IP network, you now need to move away from circuit switched systems to a full wireless TCP/IP network.

- The future requires that IoT from satellites need to co-exist with the growing and emerging IoT Industry (this is what Helios Wire is planning to achieve).
 - The following trades are some that you need to go through to determine your type of service and at what cost to the customer
System Design Trade Topics using Satellites

- Real time service with low latency data versus delay tolerant network (DTN) data services
- Direct to user versus interface through a backhaul link
- Custom stand alone user equipment versus modified user terminals
- Circuit switched versus integrated IP network for IoT services
- Unique delay tolerant network in an IP network architecture
- Distributed memory cloud or “foggy” system storage architecture
- Embedded cyber security system architecture
Real-Time vs Delay Tolerant

- Real time, low latency system from space dictates
 - Low Earth orbit (low latency) < 1000 km
 - Full Earth coverage (24/7)
 - Fast processing on satellites or bent-pipe system
 - Complex multiple access scheme for streaming and real-time services (more complex if bent-pipe)
- All of these requirements drives cost up a steep exponential curve

- Delay Tolerant Network (DTN) systems from space are developed for specific needs
 - Initially designed for NASA’s deep space communications within an IP network
 - Now for machine-to-machine (M2M) and a growing part of the emerging Internet of Things (IoT) ecosystem

- DTN systems eliminates the need for 24/7, complex access schemes and real-time service for streaming, which drives high cost systems
 - Avoids new complex designs and potential scope creep in the requirements for real-time systems
Direct to user or backhaul service

• Custom handhelds to users from satellite or a backhaul access point/terminal?
 • Custom handhelds or small terminals from satellites are expensive and create a complex layer 1 (link layer) access scheme
 • A customer access point (CAP) terminal that backhauls aggregated set of users to the satellites are more efficient in using satellite to ground spectrum and allows many more individual users simultaneously

• Custom developed user terminals or modifying the wireless radio to talk to the satellites?
 • Current satellite systems used today have custom networks that require custom radios, translation circuitry, and software to interface to the terrestrial IP network (Similar to 3G cellular interface to the internet)
 • The current satellite systems are modified circuit switched systems that translates the unmodulated bits to IP packets for the IP networks

• Future satellite systems must be transparent to the 4G/5G terrestrial systems and initially focus on a TCP/IP wireless backhaul service utilizing SDR technologies
Circuit switched or integrated IP network

- Most satellite systems are circuit switched at the link layer (layer 1)
 - Dedicated point-to-point connections (bent-pipe, digitally switched, etc.)
 - Initially developed for secure connection by MILSATCOM
 - Easier to implement through the delays in satellite communications
 - Doesn’t easily allow new service adoption at the IP layer or higher

- A packet switched IP Network through space allows more network centric services
 - More efficient than circuit switched system
 - Integrate a modified delay tolerant network (DTN) in multiple layers (CCSDS, PPP, etc.)
 - Introduction of VoIP and other IP applications has shown the desire for this service in the last couple of years
Additional Design Features

• Distributed Cloud Service (Foggy Architecture)
 • Design satellites and customer access points to have mini-cloud storage capability
 • Since IoT sensor or tag will be “smart” devices, we need to take advantage of this with edge computing
 • Distribute cloud processing near the sensor or edge creates an “edge-fog cloud” system

• Cyber Security at Multiple Layers with AI
 • Smart Security based on artificial intelligence and machine learning will impact all economic sectors
 • Focus on multi-layer cyber security architecture
 • Integrate space and time awareness, learning, decision focus, adapting, sustainable, scalable, and system integrated using the foggy storage architecture
Helios Wire Vision

Space-enabled, machine-to-machine / Internet of Things service specifically designed for **high volume** market applications.

Massive allocation of unique 60 MHz of S-band MSS (Mobile Satellite Services) spectrum, through Australian administration.

System infrastructure

- Tags/Sensors/Trackers
 - Location, elevation, industrial information, thermal, proximity, density, etc.
- Helios satellite constellation system
- Ground stations
- Cloud-based storage
- Customer
Helios Wire - System Architecture Overview

- Helios Wire system overview of a “heterogeneous network” over satellite for next generation M2M and IoT markets
 - Evolved Packet System introduces flat, packet only architecture
 - Separate signaling and data paths for enhancements
 - Enables all IP voice and data services
 - Provides standards based interoperability with other networks
Evaluating Long Range LPWAN Technologies

<table>
<thead>
<tr>
<th>Waveform/Modulation</th>
<th>Frequency</th>
<th>Data Rate</th>
<th>Range/Distance</th>
<th>Network Type</th>
<th>Max Nodes per Access Pt</th>
<th>Power Consumption</th>
<th>Link Budget</th>
<th>Battery Life Estimate</th>
<th>Bandwidth of signal</th>
<th>Signal Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFDMA Modulation
Half Duplex (standalone, guard band or in band)**
Typ freq is 800MHz, up to 14 bands from 700MHz - 2GHz.
Bandwidth is 180 - 200kHz.</td>
<td>TDMA/FDMA, GMSK & 8PSK (in band GSM only) - Half Duplex</td>
<td>250kb/sec max, typical 100kb/sec</td>
<td>Within LTE carrier range or GSM legacy network. MNO must support. Up to 20km</td>
<td>Star Network</td>
<td>Up to 200K, typ 50,000 users</td>
<td>User Element transmit power of 20-23 dBm, less than 15uA idle mode</td>
<td>164 dB</td>
<td>10 years</td>
<td>180kHz</td>
<td>1.5 - 10 seconds</td>
</tr>
<tr>
<td>OFDMA Modulation
Full Duplex (in band only)
Supports QAM</td>
<td>Typ freq is 1900MHz, in LTE carrier. Bandwidth is 1.4MHz max.</td>
<td>1Mb/sec max, typical 384kb/sec</td>
<td>Within LTE carrier range or GSM legacy network. MNO must support. Up to 25km</td>
<td>Star Network</td>
<td>Up to 1M users/cell</td>
<td>User Element transmit power of 20-23 dBm, less than 15uA idle mode</td>
<td>155.7 dB</td>
<td>10 years</td>
<td>1.08MHz</td>
<td>10-15 msec</td>
</tr>
<tr>
<td>EC-GSM-IoT</td>
<td>Typ freq is 900MHz, in GSM carrier. Bandwidth varies.</td>
<td>70kb/sec (GMSK), 240kb/sec (8PSK)</td>
<td>Within GSM carrier range, designed to utilize legacy GSM networks</td>
<td>Star Network</td>
<td>Up to 190K, typ 50,000 users</td>
<td>23 - 33 dBm, similar to NB-IoT</td>
<td>154 - 164 dB</td>
<td>10 years</td>
<td>2.4MHz - 600kHz</td>
<td>700 msec - 2 sec</td>
</tr>
<tr>
<td>Sigfox</td>
<td>Typ Standby mode of 2uA, Transmit mode of 45mA @ 14dBM</td>
<td>100 b/sec</td>
<td>3 - 10km city, 30 - 50km rural</td>
<td>Star Network</td>
<td>Up to 25K users/cell</td>
<td>Typ Standby mode of 1.5mA, Transmit mode of 10.5mA (sleep at .1uA)</td>
<td>149 dB</td>
<td>10 years</td>
<td>100Hz - 200Hz</td>
<td>2 secs/ packet, 3 sent each time on pseudo random freq</td>
</tr>
<tr>
<td>LoRa</td>
<td>Typ Standby mode of 100 b/sec, 290 bits - 38.4 kb/sec range</td>
<td>~15km city, ~50km rural</td>
<td>~25km city, ~80km rural</td>
<td>Star Network</td>
<td>Up to 40K users/cell</td>
<td>~From 21 - 30 dBm, with higher range on UL TX</td>
<td>157 dB</td>
<td>15 years</td>
<td>1MHz</td>
<td>1.2 secs</td>
</tr>
<tr>
<td>RPMA</td>
<td>Typ 10kb/sec, 290 bits - 38.4 kb/sec range</td>
<td>~15km city, ~50km rural</td>
<td>~25km city, ~80km rural</td>
<td>Star Network</td>
<td>Up to 500K users/cell</td>
<td>From 21 - 30 dBm, with higher range on UL TX</td>
<td>177 dB</td>
<td>15 years</td>
<td>~25km city, ~80km rural</td>
<td>Avg latency is 2.3 seconds</td>
</tr>
</tbody>
</table>

OFDMA Modulation - Full Duplex (in band only)

OFDMA Modulation - Full Duplex supports QAM, enabling high data rates and efficient spectrum usage. It is suitable for dense urban environments requiring high bandwidth and low latency, such as smart cities and indoor applications. The bandwidth varies, providing flexibility based on the network’s requirements.

Frequency

- NB-IoT: 800MHz to 2GHz
- LTE-CATM1 (eMTC): 1900MHz
- EC-GSM-IoT: 900MHz
- Sigfox: 868MHz
- LoRa: 868MHz
- RPMA: 2.4GHz

Bandwidth of Signal

- NB-IoT: 180 - 200kHz
- LTE-CATM1 (eMTC): 1.4MHz
- EC-GSM-IoT: 1.25MHz
- Sigfox: 125kHz
- LoRa: 1MHz
- RPMA: 2.4GHz

Signal Latency

- Typically, NB-IoT can support less than 10 seconds latency for short messages, while LoRa and Sigfox offer lower latency options suitable for real-time applications. RPMA supports latency requirements based on the specific use case.

Power Consumption

- NB-IoT: User Element transmit power of 20-23 dBm, less than 15uA idle mode
- LTE-CATM1 (eMTC): User Element transmit power of 20-23 dBm, less than 15uA idle mode
- EC-GSM-IoT: 23 - 33 dBm, similar to NB-IoT
- Sigfox: Typ Standby mode of 2uA, Transmit mode of 45mA @ 14dBm
- LoRa: Typ Standby mode of 1.5mA, Transmit mode of 10.5mA (sleep at .1uA)
- RPMA: From 21 - 30 dBm, with higher range on UL TX

Duration of Communication

- Typical durations of communication can range from seconds to minutes, depending on the application requirements and the selected protocol. For instance, LoRa can support durations up to 1.2 seconds, while Sigfox offers lower latency options with message durations of 0.4ms - 1.2s.
Helios Wire System

- Leverage the business cost model of Space 2.0 (cubesat systems)

- Leverage lower cost launches for smaller satellites to deploy the constellation

- Leverage existing IoT technologies and network infrastructure

- Focus on low cost IoT service where latency isn’t the primary driver (which drives cost)

- Develop a unique DTN network that is a satellite-based “heterogeneous network”
Thank You!

HeliosWire

www.helioswire.com