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1. AIM OF THE COMPETITION 1 
 

The application of heuristic optimization algorithms to solve power system optimization 

problems is receiving great attention due to their effectiveness in solving problems with 

inherent mathematical complexities such as high-dimensionality, non-linearity, non-

convexity, multimodality and discontinuity of the search space [1]. Knowing this, the 

Working Group on Modern Heuristic Optimization under the IEEE PES Power System 

Analysis, Computing, and Economics Committee organized a special competition panel 

in the 2014 IEEE PES General Meeting. The competition focused on the application of 

these heuristic tools for solving optimal power flow (OPF) problems [1]. Such 

competition motivated the developer to create power system optimization test beds 

considering renewable penetration and its stochastic behavior (see IEEE 2017 

competition) [2]. Such test beds are beneficial for ascertaining and performing 

comparative analysis on the general applicability and effectiveness of emerging heuristic 

optimization tools contrasted with analytical optimization [1], [2]. 

 

Along this spirit, a new competition focused on optimization problems related to smart 

grid operation was organized in 2017 [2]. More specifically, integrating high penetration 

renewable energy systems into the grid poses many challenges as such systems are 

uncertain in terms of their generation. As a result, a special emphasis on the stochastic 

factors associated with such systems’ deployment into the grid was taken into account 

when developing the test bed 1 of the 2017 competition [2]. In more details, the test bed 

focused on the stochastic OPF based active-reactive power dispatch including renewable 

energy systems (wind, solar PV and small hydro power), and the evaluation of 

implemented IEEE 57-bus system power system problems (i.e. calculation of objective 

function and value subject to a set of constraints) 

 

Following the 2017 contest, the 2018 Test Bed A competition aims to perform a 

comparative assessment of the search capability of different heuristic optimization 

algorithms, considering the stochastic behavior of the objective function for the same set 

of decision variables (please see subsection 2.1.3). Additionally, this year (2018) will 

consider controllable loads as dispatchable units in the model. 

 

The assessment will be based on statistical tests performed on results submitted by 

interested participants. For this purpose, an encrypted file has been prepared based on 

functionalities in Matlab (version: R2015a) and MATPOWER toolbox (version: 

matpower6.0b1) in order to perform automatic evaluation of active-reactive power 

dispatch optimization problem as well as to collect and store automatically the results [1]. 

In this year’s competition, the objective function is modified with respect to the 2014 and 

2017 competition. It is now a stochastic variable defined in terms of a minimization of an 

expected operational cost as impacted by the power generation uncertainty from 

renewable energy systems (detailed explanation can be found in subsection 2.1.2). 

 

                                                             
1

Please note that the structure and content of this section is similar to (it is updated the new considerations for the 2018 competition): 

2014 Competition Application of Modern Heuristic Optimization Algorithms for Solving Optimal Power Flow Problems by István 

Erlich, Kwang Y. Lee, José L. Rueda, Sebastian Wildenhues and 2017 Competition Evaluating the Performance of Modern Heuristic 

Optimizers on Smart Grid Operation Problems, Test Bed 1: Stochastic OPF based active-reactive power dispatch by Sergio Rivera, 

Andres Romero, José L. Rueda, Kwang Y. Lee, István Erlich  

 

 



The problems to be solved are treated as black box problems (inputs: decision variables, 

outputs: stochastic objective function, constraints value), which should be solved for 

different stochastic scenarios based on probability distributions of wind speed, solar 

irradiance and river flow over an IEEE 57 bus test system. 

 

The participants are requested to exclusively work on implementation of the particular 

heuristic optimization algorithm to be used, which could include any special strategy for 

constraint handling, strategy for consideration of stochastic variables, or treatment of 

discrete/binary optimization variables related to the transformers and compensation 

devices [1].  

 

What is provided in this competition? 

The competitors will have access to the followings: 

1. An encrypted file named test_bed_OPF.p along with other exemplary Matlab m-

files, which are intended for an easy adaptation to any heuristic optimization 

algorithm, included in the zipped folder named test_bedA_OPF_2018.zip.  

2. Complete details (in MATPOWER format) and updated diagram (in Microsoft 

Visio format) of the IEEE 57 bus test system are provided in subfolders named 

input_data, and Docs in the zipped folder, respectively.  

 

Please read carefully the instructions given in every m-file and in 

readme2018TestBedA_Contest.txt file, which provide precise indications about Matlab 

based procedural and implementation aspects.  

 

Anticipated Deliverables:  

 

Final results, which are automatically saved for each optimization test case over 12 

independent optimization trials in formatted ASCII-files contained in a zipped folder 

named output_data_ScenarioType_implementation_name.zip, are needed for statistical 

tests to be performed in the competition, so this folder should be sent to 

srriverar@unal.edu.co, aalsumaiti@masdar.ac.ae and j.l.ruedatorres@tudelft.nl by 

maximum 30th March 2018 (12:00 pm EST) in accordance with the guidelines provided 

in this technical report. The implemented codes for each algorithm entering the 

competition must also be submitted along with final results for full consideration in the 

evaluation. The submitted codes will be used for further tests, which are intended to 

crosscheck the submitted results. The submitted codes will be in the public domain and 

no intellectual property claims should be made.  

 

2. DEFINITION OF THE STOCHASTIC OPTIMIZATION PROBLEM IMPLEMENTATION 

(STOCHASTIC OPF) 

 

2.1. Competition files structure [2]2 

 

The formulation of optimal active-reactive power dispatch (OARPD) problem, i.e. [3]-

[4], represents an optimization problem with an objective cost-function and system 

operational constraints. The calculation of the objective function and the constraints for 

                                                             
2 Please note that the structure and content of this subsection is similar to (it is updated the new considerations for the 2017 

competition): 2014 Competition Application of Modern Heuristic Optimization Algorithms for Solving Optimal Power Flow 

Problems by István Erlich, Kwang Y. Lee, José L. Rueda, Sebastian Wildenhues  
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a set of decision variables is implemented in the encrypted file test_bed_OPF.p. 

Additionally, test_bed_OPF.p has been developed for automatic collection and storage 

of results in formatted ASCII-files in a similar way of the 2014 and 2017 contests [1]-[2]. 

It uses functions for modeling the power flow calculation available in MATPOWER 

toolbox [5], which can be freely downloaded from 

http://www.pserc.cornell.edu/matpower/. 

 

Moreover, the zipped folder test_bedA_StochasticOPF_2018.zip contains this code 

(test_bed_OPF.p) along with instructions (in each code and in the readme file) on how to 

use it as well as an implementation example with a basic particle swarm optimization 

(PSO) algorithm. The code is considered as a black box, so it cannot be modified by 

participants.  

 

In the zip file, there is a folder called test_bedA_StochasticOPF_2018. In this folder you 

can find different files of the competition. Please read the notepad file: 

readme2018TestBedA_Contest.txt in order to understand the structure of the competition 

files. 

 

Each participant is encouraged to work exclusively on the particular optimization 

algorithm to be used. The use of any type of constraint handling technique is allowed. An 

exemplary routine for constraint handling is provided in the file constraint_handling.m. 

As per this file, this routine does not affect any calculation done in the file 

test_bed_OPF.p, which internally calculates the set of fitness as a function of the different 

combinations of decision variables by using (1). 

 

 
where ρ is a penalty factor that is set to a value of 1E+7.  

 

It is clarified that the fitness calculation performed by test_bed_OPF.p is exclusively 

intended for ascertaining the fulfillment of constraints in the competition. The values of 

the objective function and the fitness function are automatically recorded at a predefined 

rate of 100 function evaluations, i.e. power flow calculations, and stored in a formatted 

ASCII-file, which will be used later in algorithms’ performance evaluation. 

 

The rounding.m file is an exemplary external function that can be employed for rounding 

the real numbers used to code discrete/binary optimization variables. You are allowed to 

modify this file to include your own rounding strategy, but the function syntax, i.e. 

x_out=rounding(x_in), should be kept, because it is called internally in the file 

test_bed_OPF.p before every function evaluation. The term x_in denotes one individual 

component of the sequence of discrete/binary variables from the vector of optimization 

variables to be generated using the offspring creation scheme of your optimization 

algorithm.  

 

The file test_bed_OPF.p is configured to automatically round the values corresponding 

to the discrete/binary coded variables to the nearest integer, so this rounding approach 

will be internally used regardless of whether your algorithm uses a rounding strategy or 

not. If a rounded variable violates its boundary, it will be automatically fixed in the file 

test_bed_OPF.p to the corresponding limit.  

http://www.pserc.cornell.edu/matpower/


 

Please read instructions given in main_2018_TestBedA_Commented.m to determine 

indexes (elements) of the vector of optimization variables defined as discrete/binary 

variables. Please also refer to main_2018_TestBedA_Commented.m file to gather how to 

obtain all power system and optimization related information, e.g. location of controllable 

transformer and compensation devices, problem dimensionality, bounds on optimization 

variables, steps of discrete variables. In the main_2018_TestBedA_Commented.m file, it 

is possible to realize where the competitor can update the code in order to prematurely 

stop running the procedure in terms of independent trials or update the size of the 

population of his/her implementation. 

 

The IEEE 57-bus test system is used to evaluate the stochastic optimization problem. 

Based on details given in [6] for system buses and branches, the data of the system has 

been structured in MATPOWER data format. Branch thermal limits were defined based 

on reference values given in [7]. A summary of the test system characteristics is shown 

in Table 1, whereas descriptions of the optimization test cases to be performed for the 

system is given in the following subsections. 

 

Please note that a MATPOWER folder must be in the Matlab work path since the codes 

use some MATPOWER functions. 

 

Table 1: Composition of test system 

IEEE 57 bus system  

Generators  7 

Loads  42 

Lines/cables  63 

Transformers Stepwise 15 

Transformers Fixed tap  2 

Shunt compensation Binary On/Off 3 

 

2.2. Considerations regarding Stochastic Behavior of Wind,       

          Solar and Small-Hydro Generation. 

  

Normally, the target in the ORAPD is to minimize the total fuel cost while fulfilling 

constraints (nodal balance of power, nodal voltages, allowable branch power flows, 

generator reactive power capability, and maximum active power output of slack 

generator) for normal (non-contingency) and selected N-1 conditions [1].  

 

In this competition, the target is to minimize the total fuel cost of the traditional generators 

plus the expected uncertainty cost for renewable energy generators (operational cost due 

to variabilities of primary energy resources). In this way, each renewable generator is 

considered to be a dispatchable generator; and depending on the available real power, it 

is considered in an underestimated or overestimated condition [8]. These conditions are 

understood in the following ways [8]:  

 

- Underestimated renewable energy generation situation 

 

In this situation, the scheduled power (Psi) from the renewable energy generator i is 

less than the available real power (Pai). In this case, there will be a cost for 



underestimating the renewable energy system generation. This cost is given by: 

Cu=cu(Pai-Psi). Such a cost is resonated to the unused power that is available for the 

system. To clarify this, only Psi will be used in such a situation. Although, such an 

unused power may be looked at as wasted power, in real power system application, 

such power can be stored in energy storage systems along with a consideration of any 

relevant cost for using the system. 

 

- Overestimated renewable energy generation situation 

 

The scheduled power (Psi) from the renewable energy generator i is greater than the 

available real power (Pai) from such a system. In this situation, there would be a cost 

for overestimating the generation from renewable energy and treated as penalty.  This 

cost is given by: Co=co(Psi-Pai). In this case, the total available power is not enough 

to meet the planned scheduled power in the system (Psi). Therefore, the network 

operator must turn on or request more power from an alternative energy source given 

in mind the related cost (co) in this case. 

 

The available real power (Pai) from a renewable energy generator is not evident with 

certainty in advance. Nevertheless, in some cases, it is possible to know the probability 

distribution of the primary energy source like the wind speed, the solar irradiance or the 

river flow. In this way, considering the relationship between the primary energy source 

and the available real power, it is possible to get the probability distribution of Pai. 

 

In order to obtain the probability distribution of the available power from the known 

primary energy source probability distribution, it is recommended to apply Monte-Carlo 

Simulations. That is to say, this probability distribution will be determined through 

scenarios of wind speed, solar irradiance or river flow, given by aleatory scenarios from 

the primary energy source probability distribution. Using the relationship between the 

primary energy source and the injected power in the network, it is possible to get scenarios 

of the available real power, and through a histogram its probability distribution. In this 

way, uncertainties in factors driving power generation from renewable energy systems 

are modeled through probability distribution functions.  Then, Monte-Carlo Simulations 

are used to account for all possible scenarios of these uncertainty factors.  After that, 

power generation from renewable energy systems is calculated for all generated 

scenarios.   

 

Given the aforementioned underestimated and overestimated situations, the expected cost 

in these situations is to be calculated as a probabilistic function given the uncertainty in 

renewable energy sources modeled through Monte-Carlo Simulations. 

 

The following steps summarize the approach: 

 

i) Generate a random primary energy source value (following the probability 

distribution of the wind speed, solar irradiance or the river flow) of scenario j. 

ii) Calculate the available real power for scenario j when renewable energy 

generator i  is used (Pai_j) by using the relationship between the primary energy 

source and Pai_j. 

iii) Verification of the underestimated (Psi < Pai_j) or overestimated (Psi > Pai_j) 

condition in scenario j. Psi corresponds to the decision variable describing  

renewable energy generator i. 



iv) Calculate the uncertainty cost for scenario j:  

 

Ci_j=cu(Pai_j-Psi) if Psi < Pai_j 

 

or 

 

Ci_j=co(Psi-Pai_j) if Psi > Pai_j 

 

v) Repeat the steps i) to iv) N (in this competition N is set to 2000 times). 

vi) Build the histogram of the uncertainty cost for the N scenarios. 

vii) Calculate the expected cost of the uncertainty cost function for renewable 

energy generator i in the considered Monte-Carlo Simulation. 

 

2.3. Multiple Sets of Monte-Carlo Simulations and Consideration of Controllable Loads 

(New Considerations in the 2018 Test Bed A) 
 

In this test bed, the objective function of the optimization problem is defined as 

minimizing the expected value of the operational cost impacted by uncertainty in power 

generation from renewable energy systems. 

 

In this year (2018), multiple sets of Monte-Carlo Simulations will be considered. That is 

to say, in 2017, for the 6 proposed cases, a set of Monte-Carlo Simulations (MCS) was 

considered (only one), using the probability distribution of the primary energy resources, 

and the result of this MCS is a set of scenarios of available power from the renewable 

energy generators. In this way, a set of the same decision variables will give the same 

expected value since it is considered only a one set of Monte-Carlo Simulations.  

 

The 2018 competition consider not only a set of Monte-Carlo simulations but also 

multiple stochastic sets of MCS. In this way, a set of the same decision variables will give 

a different expected value since it is considered stochastic sets of Monte-Carlo 

Simulations.  

 

Controllable loads (CLs) or interruptible loads are a very flexible solutions to adjust the 

load curve of any system, and to take advantage of the active participation of large 

consumption centers [9]. CLs are one of the main forms of peak demand change solutions. 

They are vital elements that can be adjusted during hours of high electricity demand. In 

more details, they are controllable to reduce the electrical stress on the system. 

 

In this test bed, the model of compensation is used based on the "capacity block 

adjustment method", which establishes compensation prices according to capacity blocks 

of the power interrupted, as shown in Table 2. It is important to clarify that PIL refers to 

the actual demand of the interruptible load. 

 
Table 2: Compensation price per interrupted capacity block 

Block # 
Power 

interrupted 

Compensation 

prices 

Block I (80% – 95%)∗ 𝑃𝐼𝐿 C1 

Block II (65% – 80%)∗ 𝑃𝐼𝐿 C2 

Block III (50% – 65%)∗ 𝑃𝐼𝐿 C3 

 



For each considered controllable load in the problem, an additional term is added to the 

objective function. This term represents the multiplication of the compensation price (Cj) 

by the difference between the demand of the interruptible load (PIL) and the dispatched 

load found from the solution of the deployed heuristic algorithm to the problem under 

study. 

 

3. TEST CASES FOR STOCHASTIC OPF IN PRESENCE OF RENEWABLE ENERGY AND 

CNTROLLABLE LOADS (IEEE 57 bus system)  

 

The IEEE 57 bus system has 7 generators. In this test bed, three of these generators are 

assigned as renewable energy generators. The renewable energy generators are located at 

buses 2, 6 and 9. Additionally, the IEEE 57 test system has 42 loads. In the test bed, four 

of these loads are considered as controllable loads. Such controllable loads are located at 

buses 8, 12, 18 and 47. 

 

Now, we will describe the objective function, the constraints and the optimization 

variables: 

 

- Objective Function: Minimize the total fuel cost of traditional generators (buses: 

1, 3, 8, 12) plus the expected uncertainty cost for renewable energy generators 

(buses: 2, 6, 9) plus the compensation cost for controllable loads (buses: 8, 12, 18, 

47). 

 

- Constraints:  

 

There are 3 types of constraints: 

 

i) Power flow constraints 

 

Such constraints are related to nodal balance of power (these are equality 

constraints) 

 

ii) Constraints penalized in the fitness function 

 

 Nodal voltages for load buses (42 + 42) 

 Allowable branch power flows (80) 

 Generator reactive power capability (7 +7) 

 Maximum active power output of slack generator (1) 

 

for normal (non-contingency) and selected N-1 conditions, that is to say 179 for 

non-contingency conditions, and 178 for each N-1 condition.  

 

iii) Minimum and maximum levels of optimization variable (2 x 35) 

 

- Optimization variables: 35 variables, comprising 13 continuous variables related 

to generator‘s active power outputs (6, the slack is not considered here, since the 

injected power is given by the power flow) and generator’s bus voltage set-points 

(7), 15 discrete variables related to stepwise adjustable on-load transformers’ tap 

positions, 3 binary variables related to switchable shunt compensation devices, 

and 4 controllable loads.  



 

- Considered contingencies (N-1 conditions): outages at branches 8 and 50.  

 

- Number of function evaluations: 30000.  

 

- Cases: Five case studies of different combinations of renewable energy generators 

(The competitor must select the case in the main.m file) 

 

3.1. Case Study 1: Stochastic OPF for IEEE 57 Bus System Considering Wind Energy 

Generators and Controllable Loads 

 

For this case study, the test bed accounts for three wind turbines to generate renewable 

energy. It is well known that the wind speed probability distribution follows a Weibull 

probabilistic distribution [10] - [11]. Additionally, there is a relationship between the 

wind speed and the power obtained from operating wind turbine as explained in the file 

WindStochastic.m.  

 

An example of the stochastic nature of wind speed reflected into uncertain power 

generation as obtained from Monte-Carlo Simulations is further explained by the 

histogram derived from randomly generated wind speed.  The latter follows Weibull 

probabilistic distribution as shown in Figure 1. Also, this figure shows the calculated 

power for the randomly generated samples of wind speed. Moreover, Figure 2 presents 

the uncertainty of power generation for the three wind turbines used in the test bed at bus 

2, bus 6 and bus 9. 

 

 
Figure 1. Wind Generator at bus 2. 



 
Figure 2. Montecarlo Scenarios of Wind Generators for case 1. 

 

In order to run the case 1, please uncomment line 69 in the file main.m 

(%ScenarioType=1; % UNCOMMENT FOR CASE 1). Please note that every time 

that you call the encrypted file (test_bed_OPF.m) in your implementation (for instance 

line 68 and line 101 in psopt.m file), there would be a different set of Monte-Carlo 

Simulations given by the stochastic process of the primary energy resource (in this case 

wind speed). 

 

3.2. Case Study 2: Stochastic OPF for IEEE 57 Bus System Considering Wind and Solar 

Energy Generators and Controllable Loads 

 

In this case study, the test bed accounts for three renewable energy generators (2 wind 

and 1 solar PV). It is well known that in several parts of the world that the solar irradiance 

probability distribution follows a lognormal distribution [8], [12]. Additionally, there is a 

relationship between the solar irradiance and the power produced from the solar PV 

system. Therefore, by modeling the probabilistic nature of solar irradiance through such 

a probability distribution function, it is possible to derive the power produced from the 

solar PV system.   

 

The file SolarWindStochastic.m, considers a set of Monte-Carlo simulations for the solar 

irradiance following the lognormal probabilistic distribution and calculates the power 

generated from the solar PV for every randomly generated sample from such a 

distribution. 

 



An example of the stochastic nature of solar irradiance reflected into uncertain power 

generation as obtained from Monte-Carlo Simulations is further demonstrated by 

histograms shown in Figure 3.  Such histograms are derived from randomly generated 

solar irradiance following lognormal probabilistic distribution and then calculating the 

corresponding power to be produced from the solar PV system. Moreover, Figure 4 

presents the uncertainty of power generation accounting for the presence of both wind 

turbines at bus 2 and bus 9 and solar PV systems at bus 6 of the test bed. 

 
Figure 3. Solar energy generator at bus 6. 

 

 
Figure 4. Monte-Carlo scenarios related to  wind and solar energy generators modeling 

for case 2. 



 

In order to run the case 2, please uncomment line 71 in the file main.m 

(%ScenarioType=2; % UNCOMMENT FOR CASE 2). Please note that every time 

that you call the encrypted file (test_bed_OPF.m) in your implementation (for instance 

line 68 and line 101 in psopt.m file), there would be a different set of Monte-Carlo 

Simulations given by the stochastic process of the primary energy resource (in this case 

wind speed and solar irradiance). 

 

3.3. Case Study 3: Stochastic OPF for IEEE 57 Bus System Considering Wind, Solar and 

Small-Hydro Generators and Controllable loads 

 

For case study 3 of this test bed, it is considered that there is a wind energy generator at 

bus and there are two generators, a solar generator and a small-hydro generator at bus 6 

and 9.  The uncertainty in wind speed and solar irradiance governing power production 

from their systems would be modelled using the appropriate probabilistic distributions 

explained earlier in case study 1 and case study 2.  Since the river flow is the main factor 

governing the power production from the hydro power generator, the probabilistic 

distribution describing the uncertainty in such a flow is modelled using a gumbel 

probabilistic distribution [13]-[14]. The file SolarWindHydroStochastic.m uses Monte-

Carlo Simulations to generate random samples of wind speed, solar irradiance, and river 

flow following the appropriate probabilistic distributions describing their uncertainty.  

The file also calculates the corresponding power from such resources’ systems as per the 

sampled data. This is further explained by Figure 5 and Figure 6. 

 

 
Figure 5. Solar and Small-Hydro Generators at bus 6. 



 
 

Figure 6. Montecarlo Scenarios of Wind, Solar and Small Hydro Generators for case 3. 

 

In order to run the case 3, please uncomment the line 73 in the file main.m 

(%ScenarioType=3; % UNCOMMENT FOR CASE 3). Please note that every time 

that you call the encrypted file (test_bed_OPF.m) in your implementation (for instance 

line 68 and line 101 in psopt.m file), there will be a different set of Monte-Carlo 

Simulations given by the stochastic process of the primary energy resource (in this case 

wind speed, solar irradiance and river flow). 

 

3.4. Case Study 4: OPF using an Analytical Uncertainty Cost Function for IEEE 57 bus 

system considering Wind generators and Controllable loads 

 

References [15] and [16] probed that the expected uncertainty cost for wind energy 

generators can be calculated with an analytical expression. This expression is called 

“Wind Uncertainty Cost Function” [15]-[16]. The competitors can reproduce the 

simulation contrasting the expected uncertainty cost from Monte-Carlo Simulations and 

from the wind analytical uncertainty cost function. The file named 

MontecarloVsAnalyticalWind.m in the folder StochasticTests has the mentioned process 

in order to get the expected uncertainty cost. 

 

Note that there is a different expected cost for every scheduled power (Psi corresponds to 

the decision variable related to the renewable energy generator i). For instance, for a 100 

MW of scheduled power from wind energy generators, the results are: 

 

ExpectedUncertaintyCost_Montecarlo = 2.0892e+04 

ExpectedUncertaintyCost_Analytical = 2.0850e+04 

 



The detailed deduction of the wind analytical expression and data demonstration can be 

found in [15].   

 

In order to run case study 4, please uncomment line 75 in the file main.m 

(%ScenarioType=4; % UNCOMMENT FOR CASE 4). Please note that every time 

you call the encrypted file (test_bed_OPF.m) in your implementation (for instance line 

68 and line 101 in psopt.m file), there will not but a different set of Monte-Carlo 

Simulations but a target function considering the wind analytical expression from [15]. 

 

3.5. Case study 5: OPF using an Analytical Uncertainty Cost Function for IEEE 57 bus 

system considering Wind and Solar generators (Cases 5) and Controllable loads 
 

References [15] and [16] probed that the expected uncertainty cost for solar energy 

generators can be calculated with an analytical expression. This expression is called 

“Solar Uncertainty Cost Function” [15]-[16]. The competitors can reproduce the 

simulation contrasting the expected uncertainty cost from Monte-Carlo Simulations and 

from the solar analytical uncertainty cost function. The file named 

MontecarloVsAnalyticalSolar.m in the folder StochasticTests has the mentioned process 

in order to get the expected uncertainty cost. 

 

Note that there is a different expected cost for every scheduled power (Psi corresponds to 

the decision variable describing the power from renewable energy  generator i). For 

instance, for a 100 MW of scheduled power from solar energy generators, the results are: 

 

ExpectedUncertaintyCost_Montecarlo = 3.2458e+04 

ExpectedUncertaintyCost_Analytical = 3.2442e+04 

 

The detailed deduction of the solar analytical expression and data demonstration can be 

found in [15].   

 

In order to run case study 5, please uncomment line 77 in the file main.m 

(%ScenarioType=5; % UNCOMMENT FOR CASE 5). Please note that every time 

that you call the encrypt file (test_bed_OPF.m) in your implementation (for instance line 

68 and line 101 in psopt.m file), there will not but a different set of Monte-Carlo 

Simulations but a target function considering the wind and solar analytical expressions 

from [15]. 

 

4. IMPLEMENTATION ASPECTS3 
 

The main.m file contained in test_bedA_OPF_2018.zip allows selecting the case to be 

solved, as well as calling the implementation routine written for your optimization 

algorithm, please note that this year is not considered to employ a shared-memory parallel 

computing functionality of Matlab’s Parallel Computing Toolbox. The file 

                                                             
3 Please note that the structure and content of this section is similar to (it is updated the new considerations for the 2018 competition): 

2014 Competition Application of Modern Heuristic Optimization Algorithms for Solving Optimal Power Flow Problems by István 

Erlich, Kwang Y. Lee, José L. Rueda, Sebastian Wildenhues and 2017 Competition Evaluating the Performance of Modern Heuristic 

Optimizers on Smart Grid Operation Problems, Test Bed 1: Stochastic OPF based active-reactive power dispatch by Sergio Rivera, 

Andres Romero, José L. Rueda, Kwang Y. Lee, István Erlich 

 



main_2018_Commented.m provides a thorough description of the overall procedure and 

adaptation of the provided files for your implementation.  

 

4.1. Experimental Settings  

 
- Trials/problem: It is fixed to 12 trials in test_bed_OPF.p by using field proc.n_run, 

which is declared global. For initial testing purposes, you are allowed to change 

the value of this variable to a lower value but please remember that 12 trials are 

mandatory for performance evaluation in the competition. 

  

- Stop criterion: test_bed_OPF.p is configured to terminate automatically an 

optimization trial upon completion of the maximum number of function 

evaluations. It is possible to prematurely stop running a current trial in your 

implemented algorithm. Nevertheless, it is pointed out that automatic storage of 

intermediate results in formatted ASCII files will not be performed in this case, 

so you may have to add some commands to your implementation for recording 

the progress of objective function, fitness, constraint fulfillment, and optimization 

variables. Please remember that the maximum number of function evaluations 

established in the previous section is mandatory for performance evaluation in the 

competition, and only the ASCII files created automatically by test_bed_OPF.p 

should be submitted for evaluation. 

  

- Initialization: A random uniform initialization within the search space.  

 

- Encoding: If the algorithm requires encoding, then the encoding scheme should be 

independent of the specific optimization tasks and governed by generic factors 

such as search ranges, dimensionality of the problems, etc.  

 

- Algorithm tuning: The participants are allowed to tune their algorithms. Details on 

the uniform tuning procedure, the corresponding dynamic ranges of algorithm’s 

parameters, and final parameter values used should be provided to the organizers 

and thoroughly discussed in the panel as well.  

 

4.2. Results to be Submitted  

 

The file test_bed_OPF.p performs automatic saving of results in formatted ASCII-files 

contained in a zipped folder named 

output_data_ScenarioType_ImplementationName.zip. The folder is created once a 

scenario of a test case for an individual system is solved for the first time. Newly created 

results are automatically added to this folder. 

 

Before submission of results, please check whether the folder for each case study (1 to 5) 

contains a total of 4 files. Each of the 4 associated files should automatically be assigned 

names according to the following convention:  

 

(Name of your implementation)_(Number of buses denoting the 

system)_2_ScenarioType_(xyz).txt where (xyz) stands for different items to be stored:  

- objective: recorded objective function convergence data for each optimization trial. 

The convergence data is recorded after the first and after every 100 function 

evaluations.  



- fitness: recorded fitness convergence data for each optimization trial. The 

convergence data is recorded after the first and after every 100 function 

evaluations.  

- variables: final best solution achieved by the optimization algorithm in each 

optimization trial 

- complexity: computing time associated with each optimization trial  

 

The file output_data_ScenarioType_ImplementationName.zip together with the 

implementation codes of the algorithm being used must be summited to 

srriverar@unal.edu.co, aalsumaiti@masdar.ac.ae and j.l.ruedatorres@tudelft.nl by 

maximum March 30th, 2018 (12:00 pm EST), indicating in the email title “Test Bed A, 

IEEE 2018 Competition”. Moreover, details on the computing system and the 

programming language used should also be provided. It is discouraged to attempt 

deliberating manipulation of the ASCII-files, e.g. replacement of the files corresponding 

to a given optimization test case by new ones collecting the results of the best 12 trials 

picked up after performing a myriad of optimization trials.  

 

4.3. Evaluation Criteria  
 

Although submitted results will be mainly assessed in terms of the achieved final fitness 

values, which are automatically saved in ASCII-files by the test_bed_OPF.p file, the 

fulfillment of the established bounds for the optimization variables will also be 

considered. Based on these results, a ranking index, which accounts for different problem 

complexities, will be established. 
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