

Test bed 2: Optimal scheduling of distributed energy resources

<u>Zita Vale</u>, Joao Soares and Fernando Lezama <u>zav@isep.ipp.pt</u>

Agenda

- Introduction and main objective
- Optimal scheduling of distributed energy resources
 - Objective function
 - Metaheuristic method framework
 - General assumptions
 - Notes on the implementation of the problem
- Scenarios overview
 - 33-bus scenario
 - 180-bus scenario

Introduction

Some Smart Grid Challenges

- Technical and economic integration of distributed resources (renewable energy sources, demand response, electric vehicles ...)
- Promotion and operation of competitive energy markets
- Self-healing
- Cybersecurity and privacy

Introduction

Optimal scheduling of Distributed Energy Resources (DER)

- Hard combinatorial Mixed-Integer Non-Linear Programming (MINLP) problem
 - High number of continuous, discrete and binary variables and network nonlinear equations
- Optimization of two large-scale centralized Day-Ahead energy resource scenarios
- Stochastic optimization (e.g. PSO, GA, SA, ABC, etc.) to reduce the execution time using traditional mathematical tools
 - State-of-the-art solvers' technology use considerable amount of time to solve

Optimal scheduling of DERs

Objective function

$$Minimize Z = OC - In$$

External

Supplier

Operation cost (OC) over a 24 hours period

DR and market purchase $\begin{bmatrix} \sum_{I=1}^{N_{DG}} P_{DG(I,t)} \cdot c_{DG(I,t)} + \sum_{S=1}^{N_{S}} P_{Supplier(S,t)} \cdot c_{Supplier(S,t)} + \\ \sum_{I=1}^{N_{L}} P_{LoadDR(L,t)} \cdot c_{LoadDR(L,t)} + \sum_{M=1}^{N_{M}} P_{Buy(M,t)} \cdot MP_{Buy(M,t)} + \\ \sum_{V=1}^{N_{V}} P_{Discharge(V,t)} \cdot c_{Discharge(V,t)} + \sum_{E=1}^{N_{E}} P_{Discharge(E,t)} \cdot c_{Discharge(E,t)} + \\ \sum_{L=1}^{N_{L}} P_{NSD(L,t)} \cdot c_{NSD(L,t)} + \sum_{I=1}^{N_{DG}} P_{GCP(I,t)} \cdot c_{GCP(I,t)} \end{bmatrix}$

Discharge of ESS and EVs

Penalization of Non-supplied demand and DG units generation curtailment

Optimal scheduling of DERs

Objective function

$$Minimize Z = OC - In$$

Incomes (In) over a 24 hours period

Optimal scheduling of DERs

Constraints

- Energy balance (generated energy equal to consumption)
- Bus voltage magnitude and angle levels (at each bus assuming that the maximum and minimum limits remain fixed across the optimization horizon)
- Power flow (constrained by the thermal line limits)
- Power transformers limits (HV/MV and MV/LV limits considering the power flow direction)
- Generation (limits in each period of DG units)
- External Suppliers (limits in each period from external suppliers)
- Energy Storage System (charge and discharge rate limits, capacity)
- Electric Vehicles (charge and discharge rate limits, battery capacity, EVs' trips requirements)
- DR programs (Demand reduction of each load due to the DR programs)

Scenarios overview

33-bus case study

The first scenario considers a 12.66 kV distribution network with:

- 33 bus
- 66 DGs
- 10 external Suppliers
- 1 large wind unit
- 15 storage units
- 1800 gridable EVs (V2G)
- 1 market
- 32 aggregated loads with demand response reduce program

EQUATIONS 280,729
SINGLE VARIABLES 234,541
DISCRETE VARIABLES 88,380
Total execution time: ~19 hours

MINLP problem using MATLAB R2014a 64 bits, TOMLAB 64 bits software using a computer with one Intel Xeon E5-1650 processor and 10 GB of RAM running Windows 8.1. The solvers used in TOMLAB were SNOPT and CPLEX

Scenarios overview

180-bus case study

The second scenario considers a 30 kV distribution network with:

- 180 bus
- 116 DGs
- 1 external Suppliers
- 7 storage units
- 6000 gridable EVs (V2G)
- 1 market
- 90 aggregated loads with demand response reduce program

EQUATIONS 910,033 SINGLE VARIABLES 763,033 DISCRETE VARIABLES 290,568

Total execution time: more than 168 hours (1 week)

MINLP problem using MATLAB R2014a 64 bits, TOMLAB 64 bits software using a computer with one Intel Xeon E5-1650 processor and 10 GB of RAM running Windows 8.1. The solvers used in TOMLAB were SNOPT and CPLEX

Test bed 2: Optimal scheduling of distributed energy resources

<u>Zita Vale</u>, Joao Soares and Fernando Lezama <u>zav@isep.ipp.pt</u>

The present work was done and funded in the scope of the following project: NetEfficity Project (P2020 - 18015); and UID/EEA/00760/2013 funded by FEDER Funds through COMPETE pro-gram and by National Funds through FCT

Cofinanciado por:

