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Outline

Generative Al (GenAl) has proliferated in different domains. Electronic design automation (EDA) is no exception! In
this talk, we’ll examine how two different models are finding use in different areas of EDA.

| Motivation

Generative Adversarial Networks
for Modeling . .
Background - High Speed (Receiver)

Large Language Models for EDA
How We Model

Background - Thermal (PCB)

Data & Results
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Motivation

« Current methods to simulate high-speed receivers are time-consuming
—Multiple iterations that human designers to develop models that correlate to actual hardware
—Can take months of a human designer’s time
« Simulations are computationally expensive
—Running bit-by-bit simulations take time
—Macro-models can take upwards of 4-5 minutes as they perform fransient and statistical
analysis
« EDA tools might not support specific macro-model versions
—Certain tools are not backward compatible and won’t work with older macro-models
—Need expensive licenses for EDA tools

—
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High-Speed Link Signaling

As channel speed goes higher, the channel's loss
increases

Simulation becomes more challenging due to the
complexity of the circuit and reduced noise margin
Requires accurate modeling of multiple parameters (eye
heights and widths)

Package via—p

Fig. Inside the server
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* https://en.wikipedia.org/wiki/SerDes
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Fig. A complex backplane channel**
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Fig. Parallel to Serial data conversion for transmission over a channel®

** https://www.amphenol-icc.com/connect/backplane-connectors-for-pcie-applications.html



Signal Integrity: NRZ

* For NRZ one-bit symbol with 2 distinct amplitude levels
* Different ways to evaluate the performance of a link
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Signal Integrity: Pulse Amplitude Modulation Level 4 (PAM-4)

—

Enterprise

PAM4 signaling is an effective way to double the bandwidth while keeping the same Nyquist frequency at the
expense of decreasing signal to noise ratio

A two-bit symbol with 4 distinct amplitude levels

Enables the use of existing channels at high bit rates without doubling the baud rate and increasing channel
loss

12 different transitions possible (6 rise/fall)
— Reduces the SNR by 9.5db
— Susceptible to crosstalk and reflections

2 "—s___ = e ——— '
NC STATE
Hewlett Packard UNIVERSITY Fig. PAM-4 vs NRZ eye openings compared* | 6

*https://www.synopsys.com/designware-ip/technical-bulletin/pam4-400g-ethernet-2019q3.html



Signal Integrity: Crosstalk

* Energy induced on a victim line by a switching signal on a neighboring aggressor line
* Itis edge rate dependent and occurs due to mutual coupling between the lines
* Two kinds:

— NEXT/ Backward: Amplitude depends on T, of the aggressor and saturates; additive
couple

— FEXT/ Forward: Pulse with a duration of the T, and amplitude dependent on length of
trace with coupling; subtractive coupling

Traces

Edge-Coupled

L., is Dominant \

C,,is Dominant D

Broadside-Coupled
or Tandem

Planes

Fig. Crosstalk due to coupling edge or tandem coupling

—
NC STATE
Hewlett Packard | IUNIWEAIY -



High-Speed Receiver Equalization

Decision Feedback Equalizer (DFE)
e Slicer quantizesinputasOor 1
» Feedback FIR filter directly subtracts the Intersymbol interference (ISI) from the incoming signal
« Can only remove post-cursor ISI
« Tap values are dependent on how much equalization is needed

Refined BP Channel 6Gb/s Pulse Responses
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Fig. DFE removing post-cursor ISI



High-Speed Receiver Equalization

Continuous Time Linear Equalizer (CTLE)
« Can be implemented as passive or active
 Implement a high-pass filter to compensate for channel loss*
o Amplifies noise and crosstalk

Channel Response w/ RX CTLE Eq
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howmwo oo
N

=30} — Channel

Channel Response (dB)

—RNETIE
o | w/ RXCTLE Eq
-40
Frequency (GHz)
Fig. Frequency response curves of channel, CTLE, and Channel + CTLE
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*W. T. Beyene, "The design of continuous-time linear equalizers using model order reduction techniques," 2008 IEEE-EPEP Electrical Performance of Electronic Packaging, San Jose, CA, USA, 2008, pp. 187-190, doi: 10.1109/EPEP.2008.4675910.



ﬂat is a Neural Network?

feature,
feature,

feature,,

—
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Fully Connected Network

Input Hidden
layer layer layer

Output

Fig. A fully connected network with hidden layers and multiple inputs
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Convolutional Neural Network
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Fig. Convolutional and pooling layers of a CNN. The input passes 2 filters of size 2, after which the

output is sub-sampled using maximum pooling with a stride of 2.



ﬂat are Generative Adversarial Networks?

e GANs consist of two modules that play a zero-sum game and try
to outperform each other until they reach a state of equilibrium

—Generator (G): Creates new examples from a learned latent
distribution

—Discriminator (D): Discerns whether an example provided to it
comes from the generator or dataset

» Generates data with the same statistical behavior as the training
data

Fig. GAN generated outputs*®

—
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ﬂat are Conditional Generative Adversarial Networks?

e CGANSs consist of the same two modules, however,

—-The generator learns to output, y, from a given input, x, in addition to a

random vector from a latent space

—The discriminator discerns whether a sample provided to it comes from

the generator or the dataset, given the same additional input
e The objective function for the cGAN is as follows:

Legan(G, D) = E, [log(D(y|x))] + E, ,[log(1 — D (G (z|x)|x)]

—-where, z is randomness introduced by dropout in our implementation

Input Example Additional
G : Information

Random Input Additional
Vector Information
Generator
Model
Generated
Example
—
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* https://machinelearningmastery.com

\/

Discriminator
Model

Binary Classification
Real/Fake

Fig. Overview of the cGAN training process*

Labels to Street Scene

input output

Aerial to Map

outout

Fig. cGAN generated with pix2pix performing
image to image translation**

**P.lIsola, J. Zhu, T. Zhou, and A. A. Efros. 2017. Image-to-image translation with conditional adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 5967-5976. https://doi.org/10.1109/CVPR.2017.632



How Does Time-Series Work in all of this?

* Encode time series as an image by transforming to a Gramian Angular Sum Fields (GASF)*

—Rescale the measurements between the interval [-1,1]
—Convert to the polar coordinate system by taking the arccosine of each time step

« Trigonometric sum between cosine of the sum of the i and the j™ angular points to form a GASF
—Takes < 10ms to finish the GASF generation over the entire dataset
—Captures the temporal dependency between different time steps

» Captures the ISI effectively

Polar Coordinates
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Scaled Waveform [-1,1]
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Fig. Conversion of time series to a polar encoding and a GASF

—
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*Z. Wang and T. Oates. 2015. Imaging time-series to improve classification and imputation. In International Joint Conference on Attificial Intelligence (IJCAI). 3939-3945.



ﬂet Generator (2-Encoder)

* The generator is given the input waveform encoded as a GASF and taps weights to predict
the bit error rate (BER) contour plot

— U-Net-based generator as suggested by Pix2Pix *

— Additional encoder network to learn the tap settings

* The tap network is a 4-layer fully connected network where the outputs are latent variables

) > Discrimi Determine if Combination is from

g Dataset or Generator
, Convolutional Layer with Ground-Truth BER Plot
Skip Connections O

/ /" GASF (Graphical Rep. of Rx
: Input Waveform

| ’._f Wy e ‘!1

R EE IR T Decoder
Input Image
Encoder | T
e e Generator
NC STATE Fig. Generator of the cGAN conditioned on the GASF and DFE tap configurations to predict an eye diagram
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*P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5967-5976.



U-Net Dlscrlmmator (2- Encoder)

—
"""""""""""""""""""""""""""""""""""" Global
Prediction
v Network
v
BRI B K Y Discriminator Local
GASF (Graphical Encoder D prediction
Rep. of Rx Input :
Waveform) ! . Convolutional Layer with
[ Tap Settings || Skip Connections

Fig. cGAN discriminator where the GAN is conditioned on a GASF and tap weigths and predicts a local and global value

* The discriminator is a U-Net architecture that predicts both a full pixel map (at decoder output)
and a single true/false prediction (at the bottleneck) for a given input*
— Takes the input GASF, tap values, and either the ground truth BER plot or generated BER plot
— Predicts whether the concatenated image is from the dataset or generator using two levels of
prediction

—
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* E. Schonfeld, B. Schiele, and A. Khoreva. 2020. A U-Net based discriminator for generative adversarial networks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8207—8216.



Metric Network

BER Plot (Receiver Output)

Metric Network Model

—
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Fig. Neural network predicts the bathtub curves from the ground truth BER/eye-diagram

» To evaluate the quality of generated images, we use a deep neural network (DNN) trained on the ground truths eye diagram and
their corresponding characteristics

— Uses encoder model architecture from the GAN generator/discriminator

— Consists of successive Convolution and Batch Normalization layers to reduce the dimension of the input image
e Output neurons correspond to the number of characteristics to evaluate the generated plots
- 700 points for the bathtub curve

oWe calculate the Pearson Correlation Coefficient (PCC) as well as the root mean squared error (RMSE)of the generated bathtub curve to the
ground-truth bathtub curve to evaluate the generated BER plot

- 2 for the eye characteristics: eye height and width

NC STATE
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Datasets

Sim/ Meas.

CTLE | Bitstreams

Characteristics

NRZ (no Meas.

Xtalk)
NRZ Meas.
(Xtalk)
PAM4 Meas.
(Xtalk)
NRZPAM-4
| RX (Victim) TX (Victim) ———>

{ RX (Aggressor) TX (Aggressor)

G
Channel Crosstalk |
Emulator

A

Channel Loss
Emulator

Channel
Conditions
Yes Yes
Yes Yes
Yes Yes

Table. Description of the different datasets
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ERNET—

Fig. Device setup for measurement based

NC STATE
E':%Z#Sﬁfsi“"a'd UNIVERSITY

—>

Channel #n ‘

No

Yes

Yes

| i ‘i [ " i‘ I fl |’
“ i | I‘I‘.“ ‘('. @
Channel #1 ST \

Channel #2 }—» ‘.I“‘, | 

BTC/Eye

BTC/Eye

BTC

Rx g
U CTLE \ DFE

Fig. Alternate view of the data collection setup



BER Pre-processing

For NRZ
5 channels with varying loss conditions

For NRZ with crosstalk
4 channels with varying loss conditions
3 crosstalk configuration per loss

For PAM-4
4 channels with varying loss conditions
7 crosstalk configuration per loss

7 receiver tap configurations

— Includes CTLE and DFE tap values

Uniform sampling across all taps

Captured BER contour plot

Original dimension is 330x330 to 256x256

— Logq of the original value and scaled [0,1]

NC STATE
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| 18



Ti_me Series Pre-processing

e Capture the receiver waveform for a SerDes running at 15 Gb/s at
20 ps intervals with a PRBS-15 bitstream
e Select the number of bits from PRBS and create a window using
256 time-steps
— Include overlaps with previous windows to form a GASF input
with multiple channels that maintains dependencies across
multiple channels
* Raw fime series used to generate the GASF
— 25% overlap between windows
— Can extend to a more extensive bit sequence without
performance degradation
* Each window ends up being treated as a channel (like RGB) and
together forms the input for the GAN

—
NC STATE
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Fig. Windowing the time series and its corresponding GASF for 150 bits



Training Progression with the U-Net

Training Progression

Generated Contour Plot Generated Contour Plot Generated Contour Plot

Discriminator False Discriminator False Discriminator False

X

&

Fig. Evolution of the discriminator pixel prediction and the corresponding generated contour plot for a known GASF

—
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Interpolation Between Channels

GAN: High Loss
Input Waveform Input GASF Low Gain High Gain
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Ground Truth: High Loss
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In_terpolation Gain Conditions

—
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NRZ with Crosstalk PCC

« Additional tap to indicate whether there is crosstalk o % ke
—300- bits with a 25% overlap 400 18.38 0.98

e Metric network error (EH/EW ) 767
-MAPE: 4.47% and 3.68% 500 18.95 0.98

» Time series overlapping 7.89
. . . . . 600 9.57 0.99

—-Without overlapping EH/EW error increases to 18.14% and 9.96% 6.05

Table. Error with respect to increasing bit sequence
Input GASF True Contour Plot True Contour Plot Vertical BTC Horizontal BTC

h.

t
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Fig. Results (left to right) the GASF input, ground-truth, cGAN-generated BER contour plot, vertical and horizontal BTC

—
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PAM-4

Generated Contour Plot Diff Contour Plot

True Contour Plot
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Fig. Evaluation of the horizontal and vertical bathtub curves for the ground truth and generated BER contour plots
Fig. Reference for where each bathtub curve slice is taken
* U-Net Generator (2-Encoder) & U-Net Discriminator (2-Encoder)
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PAM-4 Continued

Calculate the image difference of the generated vs. the

ground truth BER contours

MAPE (Mean Absolute Percentage Error) as the image

difference

MAPE(Z, C) = M_

lc

M

z 100 % 2
*_
p:

m=1

The worst MAPE is 2.5%
- When loss = 40% & Xtlk = 60%

—
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Test Set: Loss vs Crosstalk Error
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Fig. Channel loss vs Crosstalk MAPE Error on test set



Training and Inference Times

Testing Time (per

batch of 4)

NRZ (no
Xtalk)

NRZ
(Xtalk)

PAM4

—

Hewlett Packard
Enterprise

Training Size Test Size Training Time (per
iteration)
(sec)

14,400 3,600 13451

6,917 1,730 107.35

11,468 2,868 178

Table. Comparing dataset sizes with training and inference times

NC STATE
UNIVERSITY

(ms)
135

127

129
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Thermal Problems

e Like high-speed receiver modeling, thermal
simulations can take up significant resources
-The compute depending on the size of the board
—Requires iterative simulations during development to

ensure thermal performance is met

o The tools themselves are iterative
—-They perform power and electrical simulations and

—-Feed the temperature solution back to recalculate the
electrical parameters

— The electrical stimulation restarts with new parameters
until the power and thermal solution reach equilibrium.

Fig. The backplane thermal hotspot (bottom) due to excessive power drop (top).

—
NC STATE
Hewlett Packard UNIVERSITY | 27



System Level Data

* Vary the sink current between [0-40] A at uniform intervals for one
chip with the other off
— Then switch which chip is on
* Run Cadence PowerDC®
— First collect single IR current density maps — no heating effects
O Is the input for the cGAN
— Run E/T Co-Simulation flow
O Captures the heating effects
O Is the output for the cGAN
* Preprocessing
— Scale the power and heat maps to [-1,1]
— Split into 80% for training-validation and the remaining 20% for
testing

Fig. Thermal problem for simulation

—
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Results on System Level

—
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Current Density Map True Heat Map Generated Heat Map

Animation: (Left to right) Ground truth current density map, simulated heat map and the generated heat map

NC STATE
UNIVERSITY
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T_hermal System Level - Over a Dataset

Distribution of Errors Across Test Set for RMSE

50 A1

10 A

0 T T T
-0.01 0.00 0.01 0.02

RMSE Error

Fig. Distribution of test set errors

—
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Principal Component Analysis of Latent Space
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Fig. Exploring the latent space to understand the underlying physics

30



@eraﬁve Digital Twins

e Digital twins are computational models that cover the solution space within a
targeted design limit

« Asymmetrical training vs. inference speed
—-Large dataset and high computational demand to train a generative model
—-Lightweight and fast computation for inference

 Realtime prediction of SI or multi-physics (power/thermal) systems

e Allow dynamic performance tuning based on changing input condition

« Generative models may have invertible solutions, i.e., given a desirable output, what
is the most likelihood input condition

—It can be constrained by power, space efc.

—
NC STATE
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Demo!

—
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Eline

Generative Adversarial Networks
for Modeling

LLMs for EDA

—
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What are Large Language Models?

How do they Work?

LLM Applications for EDA

Challenges on Using LLMs in EDA

33



What are Large Language Models?

ZIP
parameters.zip
~140 GB file
Chunk of the infernet, ~10TB 6,000 GPUs for 12 days, ~$2M ~1e2* FLOPS
of text

—
NC STATE
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*
Andrej Karpathy — Introduction to Large Language Models; https://www.youtube.com/watch?v=zjkBMFhN;j_g numbers fOF Lla ma 2 70B



How do they Work?

sat — Vc{“\o’l‘ *\'{“\
O XN \e”o’» — mat (97%)
@\ @
on — | g ! %0&’(
. _ | gl gNg/ |1
e.g. context of 4 words predict next word

—
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Andrej Karpathy — Introduction to Large Language Models; https://www.youtube.com/watch?v=zjkBMFhNj_g



How do they Work?

Prompts Dataset
Step 1: Pretrain on next word prediction for large volumes of text
(trillions of examples of the form below): x: A dog ...
A dog is man’s best _____ => friend ———————~ [ Tunedlanguage )
Initial Language Model Model (RL Policy)
i P4 Reinforcement Learning
L 88, 4 v Update (e.g. PPO)
. . . . 8" |l Ervaie
Step 2: Perform Reinforcement Learning from Human Feedback . -4
(RLHF) to frain the model to do what humans want, rather than v v
. . : : g Tined Toxt 880 Tveard (Rresoreriod)
just predict next word. - finetuning ok N -
\ Z J " :
yﬂj\
_/\KLI?K-L (@PO(EJ’]I) || Thase(¥]z)) 5 @
KL prediction shift penalty
ro(y|z)

—
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Anna Goldie, LLM-Aided Design, ICCAD-2023 Panel, San Francisco, CA, USA, 2023, https://vlsicad.ucsd.edu/NEWS23/ICCAD-2023-panel-v2.pdf



Summary of LLMs

Stage 1: Pretraining

1. Download ~10TB of text.

every 2. Get a cluster of ~6,000 GPUs.

i 3. Compress the text into a neural network, pay
~$2M, wait ~12 days.

¥ 4. Obtain base model.

Stage 2: Finetuning

1. Write labeling instructions

2. Hire people (or use scale.ai!), collect 100K high
quality ideal Q&A responses, and/or comparisons.

every 3. Finetune base model on this data, wait ~1 day.
~week 4. Obtain assistant model.

5. Run a lot of evaluations.

6. Deploy.

7. Monitor, collect misbehaviors, go to step 1.

—
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Andrej Karpathy — Introduction to Large Language Models; https://www.youtube.com/watch?v=zjkBMFhNj_g



LLM Designed Chip to Tape out

Let us make a brand new microprocessor design together. We’
re severely constrained on space and I/0. We have to
fit in 1000 standard cells of an ASIC, so I think we
will need to restrict ourselves to an accumulator
based 8-bit architecture with no multi-byte
instructions . Given this, how do you think we should
begin?
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Comb. Logic | 999
Diode 4
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Tap 300

Above: (a) Components.

Left: (b) Final processor
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SLript Generation and Automation

#1: User Requirement

For the design named “aes” on the platform "asap7”, please perform synthesis with a clock period of 5, followed
by floorplan with a core utilization of 70%. Then, execute placement with a density of 0.8. Next, proceed with CTS
to fix 40% of violating paths. Finally, evaluate the performance after routing using "power" metric.

\ #2: Task Decomposition #3: Script Generation
R e i
: :ask'_i a S? up the EDA tool : I e P L R L | _____________________ .
= ; func: set_up() i i eda = chateda() : |
'-_' | args: d [ 1" T L AL LD e :
! design_name: "aes" : kb perioen G158 ) | | e s e m e e s n e s e s .
: | platform: *asap7” y | (hiessesh 1 || L eds.setupidesign name="ses", platform="assg?") _ |
In-Context Examples | P T = L s ' R
i

1 tns_end percent: 40 | #® Perform synthesis = i i
s 'I‘L """"" 4 | 8da.run_synthesis(clock _period=5) ) : _

o

aske: perform synthesis
unc: run_synthesis(

: taske: perform routing
______ | func: global route()
detail_route

| # Perform placement
| eds,placement (density=0,8]) I
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: taska3: execute fioorplan

i
+ 1
GPT-3.5/4 Instruction Pool ; g e b T s R A R LS a
: LL:HG-' preothiay e e MU e .
- . [}
| gf,;e utilization: 70 I  18sK7: evaluation ! | | ieda.ctsitns_end percent=20) !
e T s i func: get_metric) !
e 3 | lems R s T .
; taskd: perform placement | i stage: “route” : | eda.global_routel) !
! func: placement() : : metrics: ["power'] ! | eda.detail routel)
| R . DR R R, S vy T 1
: ELI'gS. it 0.8 : | # Evaluate the performance aftér routing =~
cndiat S NN | i Performance = eda.get_metrici®route”, ["power’l) __ !
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Challenges with LLMs in EDA

o Verification
—Code generation is good with the LLMs
—However, we need to ensure that the generated code is accurate
oEasy for high-resource languages like Python harder for HDL

e Data-problem
—Data needs to be on-premise due to its sensitive nature
—Code for designs are stored in-house
e Optimization
—Numerous problems on the backend require further optimization
—~Where do LLMs come in?
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Chat with Your Documents

(ol

11m_chain.invok context": " Mhat e vis stub 1 > ena?"})

result

1'11 do my best to provide accurate and helpful responses to your questions. However, I must point out that the question about "via stub recommendatio
ns for PCIe Gen4™ does not make sense, as there is no such thing as "via ubs” in the context of PCIe Gen4.

PCIe (Peripheral Companent Interconnect Express) is a high-speed peripheral interface bus standard, and it does not involve any concept of "stubs.
e latest version of PCIe is PCIe 4.9, which supports speeds of up to 16 G6T/s (gigatransfers per second).

Therefore, I cannot provide any recommendations for "via stubs™ for PCle Gend, as there is no such thing. Instead, I suggest focusing on the proper de
sign and implementation of PCIc 4.8 systems, which can be found in the PCIe 4.8 specification and related documentation.

Fig: No RAG model response about via stub recommendations

rag_chain =  {"c i : hrough()}
rag_ch

1Im_chain)
G )

result

Based on the provided PDF documents, there are recommendations for via stubs in high-speed differential signal lincs, such as PCle Gen4. Herc arc some

key points:

1. Use long vias with back-drille Figure 2-4 in the document shows an example of long vias with back-drilled stubs. This layout technique help

s to minimize crosstalk and improve signal integrity.

2. Avoid placing probe or test points on high-speed differential signal
Route high-speed traces under or near crystals, oscillators, clock signal generators, switching power regulators, magnetic devices, or integrated c

Doing 5o can cause signal degradation and increase crosstalk.

ircuits (ICs) that use or duplicate clock signals should be avoided.
4. Use ESD/EMI components that permit flow-through routing of the differential signal pair: These components provide the cleanest routing and help to

reduce losses.

5. Incorporate voids under the ESD/EMI component signal pads to reduce losses: See Figure 2-5 for an example of voids below surface mount devices.

However, I couldn't find any specific recommendations for PCIe Gen4 in the provided documents. The documents focus more on general high-speed differen

tial signal layout guidelines and ESD/EMI considerations.

Fig: Model response with RAG on a PCle Gen4 document
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2.3 Vias, Stub, and ESD/EMI Layout Guidelines

1.

The use of vias is essential in most routings, but vias add additional inductance and capacitance, and
reflections occur due to the change in the characteristic impedance. Vias also increase the trace length.

If possible, avoid routing high-speed traces through the vias.
If it is impossible to avoid vias:

+ Ensure that the via count on each member of the differential pair is equal and that the vias are as equally
spaced as possible. A maximum of two vias are recommended for high-speed trace over 5Gbps.

+ Be careful with the retum current when changing the layers. Use ground vias around the signal via to
make sure that the return current can flow as close as possible to the signal (see Figure 2-3)

Top View

Source

GND (12)

Side View

GND (LS}

Sink.

Figure 2-3. Differential Pair Via Return Path With GND Vias
+ Longer via stubs resonate at lower frequencies and increase insertion loss, keep these stubs as short as
possible. Tl recommends keeping via stubs to less than 15 mils. Longer stubs must be back-drilled (see
Figure 2-4).
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Figure 2-4. Long Vias With Back-Drilled Stubs
Do not place probe or test points on any high-speed differential signals.
Do not route high-speed traces under or near crystals, oscillators, clock signal generators, switching power

regulators, mounting holes, magnetic devices, or integrated circuits (IC) that use or duplicate clock signals.
When choosing ESD/EMI components, Tl recommends selecting devices that permit flow-through routing of
the differential signal pair because they provide the cleanest routing

+ Incorporate voids under the ESD/EMI component signal pads to reduce losses (see Figure 2-5)

SMD
PAD

Signal Trace

nal Trace

Figure 2-5. Void Below Surface Mount Devices
« Use 0402 0-Q resistors for common-mode filter (CMF) no-stuff options because larger components will
typically introduce more loss that the CMF itself.
Keep the overall routing of AC coupling capacitors+ CMF+ ESD protection as short and as close as
possible to the connector.

Fig: Relevant passage from the PCle Gen4 Tl Mux Document*



LLM Agents T
o LLM applications that can execute complex tasks ‘ *1 |
—A general-purpose agent serves as the brains | | w

—Planning: Breaks down each step of the necessary steps; ReAct
(Reason + Act) is a common framework to do so

—Memory: Store the agent’s logs and previous thought processes

-Tools: Enable the LLM to perform external tasks, such as using a
calculator, EDA-tool usage, etc.

Fig: Example of different agent components*
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Conclusion

« We show how cGANSs can be used to effectively model high-speed receivers
—Handles complicated channels (crosstalk)
—Handles state-of-the art signaling scheme (NRZ or PAM-4)

« We show how the cGAN can be adapted to different domain, namely, thermal

—-The solutions are invertible, i.e., we have insight into what the model is doing in terms of
the physical sink currents

« We discussed about LLMs and their applications and challenges to EDA
« We talk about the future of LLMs in EDA
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Questions?

This research is supported in part by the NSF under the Grants No. CNS 16-244770 (Center for Advanced
Electronics through Machine Learning) and CNS 18-50373. | would like to thank HPE, Intel and Siemens for their

technical support.

—
Hewlett Packard NC STATE .
Enterprise UNIVERSITY © 2024 Hewlett Packard Enterprise Development LP



