Storage & Variable Generation in Capacity Auctions

Chris Dent, Amy Wilson and Stan Zachary
(UoE / Turing Institute)

Special thanks to National Grid
Work supported by RCUK Energy Programme
Definition of risk indices

• Evolution of margin through peak season
 \[Z_t = X_t + Y_t - D_t \]
 - \((X_t, Y_t)\) available (conventional, VG) – interconnection/storage?
 - \(D_t\) demand, \(\Delta\) time resolution
 - \(t\) ranges over future season under study
 - Indicator \(I_t\): 1 if \(Z_t < 0\); 0 otherwise

• Standard adequacy risk indices (what is adequacy?)
 - Loss of Load Expectation (duration of shortfall) – expected (mean) total duration of shortfall over all possible realised peak seasons
 \[[\text{LOLE}] = \Delta \cdot E \left[\sum_t I_t \right] = \Delta \sum_t P(Z_t < 0) \]
 - Expected Energy Unserved (energy not supplied) – expected (mean) energy unserved over all possible realised peak seasons
 \[[\text{EEU}] = \Delta \cdot E \left[\sum_t \max(-Z_t, 0) \right] \]
CONTRIBUTION OF STORAGE
What’s different about storage

• Different from what?

• Differs from all the above in that…
 – There is a relevant control action (when to use finite energy)

• Differs from conventional but not wind in that…
 – It’s not just about mechanical availability
Why does difference matter? (1)

- Choice of risk index
 - Suppose index/target is duration of shortfall
 - Shape over time of shortfall
 - Energy limited storage minimises duration of shortfall by doing this
 - Minimises maximum shortfall depth by doing this

- Conventional plant makes greater contribution
 - But gives same reduction in shortfall duration

- Energy unserved not duration gives fair comparison
 - Capacity mechanism – uses energy index for storage EFC
• Conv units – adding one unit to ~250 shifts distribution
 – Work with mean available capacity as additive commodity
• Wind and storage – not so simple
 – Wind (dependence between units), storage (energy limit)
 – Not straightforward to run auction without additive commodity
• Possible resolution
 – Main topic of this talk
RISK METRICS AND EQUIVALENT FIRM CAPACITY
Definitions and assumptions...

- Risk indices
 \[
 \text{LOLE} = \sum_{t=1}^{n} P(Z_t < 0),
 \]
 \[
 \text{EEU} = \sum_{t=1}^{n} E(\max(-Z_t, 0)) = \sum_{t=1}^{n} \int_{-\infty}^{0} P(Z_t < z) \, dz,
 \]

- Assumptions and definitions
 - Demand process \(D_t \) given, i.e. specific scenario (important for capacity market)
 - \(\rho(R) \) is risk level with set \(R \) of resources
 - Continuity: \(\rho \) may be varied continuously
 - Smoothness: \(\rho(R) - \rho(R \cup \{i\}) \) approx. constant wrt \(R \)

- ‘Derivative’ with respect to firm capacity \(y \)
 \[
 \rho(R + y) = \rho(R) + \rho'(R)y,
 \]

- Equivalent Firm Capacity definition
 \[
 \rho(R \cup \{i\}) = \rho(R + efc_R(i))
 \]
 \[
 \Rightarrow \quad \rho(R \cup \{i\}) = \rho(R) + \rho'(R)efc_R(i)
 \]
... And some consequences

- Alternative calculation for small i
 \[ef_{c_R}(i) = \frac{\rho(R \cup \{i\}) - \rho(R)}{\rho'(R)} \]

- Derivative of EEU wrt firm cap (only gen, no storage)
 \[EEU'(R) = -\text{LOLE}(R) \]

- When there is storage
 - Assuming storage recharged overnight…
 - … and any current shortfall prioritised…
 - … optimal strategy (see ST / SZ / JC etc)…
 - … S_e: stores empty at end of day (uncertain ex ante)
 \[EEU'(R) = -\text{LOLE}(R \setminus S_e) \]
 - Firm capacity contributes more when added to portfolio including storage resources
CAPACITY MARKETS
Capacity markets – risk target

• Minimise procurement cost subject to
 \[\rho(R) \leq k \]
 – Add in units in order of value for money
 – Identify price \(p \) and set of units \(R \) such that
 \[c_i \leq p \times ef_{c_R}(i), \quad i \in R \]
 \[c_i > p \times ef_{c_R}(i), \quad i \notin R \]

• If marginal EFCs known ex ante…
 – Rank units by \(c_i/ef_{c_R}(i) \)
 – Add in merit order until EEU target hit

• But they are not…
 – Initial estimate of EFCs (e.g. by adding to guess at auction result)
 – Create merit order, add units until EEU target hit, recalculate EFCs
 – Iterate until convergence
Capacity markets - economic

• Minimise

\[\text{VOLL} \times \text{EEU}(R) + c(R) \]

– If all resource is firm capacity

\[\text{VOLL} \times \text{EEU}'(R) + c'(R) = 0 \]

– If \(c'(R) \) is written CONE:

\[\text{LOLE}(R) = \frac{\text{CONE}}{\text{VOLL}} \]

– Economic condition ‘pivots’ onto LOLE constraint

• If VG or storage…

– Holds with VG if VG capacity small, or diurnal variation / statistical association with demand process weak

– Does not hold for storage – have to work directly with EEU constraint or economic optimisation [remember shortcoming of LOLE]
Capacity markets - example

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Cost (£)</th>
<th>Clearing price (£)</th>
<th>LOLE (hrs/year)</th>
<th>EEU (MWh)</th>
<th>Storage EFC (MW)</th>
<th>Sum of store EFCs (MW)</th>
<th>Firm capacity (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>71,224,647</td>
<td>26,098</td>
<td>3.04</td>
<td>2741.6</td>
<td>1864.1</td>
<td>2619.1</td>
<td>110</td>
</tr>
<tr>
<td>1</td>
<td>74,220,787</td>
<td>40,509</td>
<td>2.93</td>
<td>2737.4</td>
<td>325.5</td>
<td>182.2</td>
<td>1650</td>
</tr>
<tr>
<td>2</td>
<td>66,787,959</td>
<td>28,408</td>
<td>3.01</td>
<td>2743.6</td>
<td>1703.4</td>
<td>2081.0</td>
<td>270</td>
</tr>
<tr>
<td>3</td>
<td>68,377,357</td>
<td>38,977</td>
<td>2.80</td>
<td>2728.3</td>
<td>598.6</td>
<td>374.3</td>
<td>1380</td>
</tr>
<tr>
<td>4</td>
<td>60,731,412</td>
<td>29,560</td>
<td>2.97</td>
<td>2745.6</td>
<td>1402.7</td>
<td>1484.5</td>
<td>570</td>
</tr>
<tr>
<td>5</td>
<td>63,159,012</td>
<td>36,587</td>
<td>2.83</td>
<td>2743.7</td>
<td>943.4</td>
<td>696.3</td>
<td>1030</td>
</tr>
<tr>
<td>6</td>
<td>60,769,114</td>
<td>32,210</td>
<td>2.84</td>
<td>2739.7</td>
<td>1204.7</td>
<td>1131.6</td>
<td>755</td>
</tr>
<tr>
<td>7</td>
<td>60,818,836</td>
<td>34,110</td>
<td>2.94</td>
<td>2747.1</td>
<td>942.2</td>
<td>825.0</td>
<td>958</td>
</tr>
<tr>
<td>8</td>
<td>60,330,601</td>
<td>32,290</td>
<td>3.02</td>
<td>2744.1</td>
<td>1203.2</td>
<td>1098.4</td>
<td>770</td>
</tr>
<tr>
<td>9</td>
<td>60,866,529</td>
<td>34,088</td>
<td>2.81</td>
<td>2744.9</td>
<td>1022.9</td>
<td>835.5</td>
<td>950</td>
</tr>
<tr>
<td>10</td>
<td>60,310,619</td>
<td>32,634</td>
<td>2.60</td>
<td>2736.1</td>
<td>1096.0</td>
<td>996.1</td>
<td>852</td>
</tr>
<tr>
<td>11</td>
<td>60,001,741</td>
<td>33,142</td>
<td>2.80</td>
<td>2739.8</td>
<td>1034.7</td>
<td>870.5</td>
<td>940</td>
</tr>
<tr>
<td>12</td>
<td>60,310,619</td>
<td>32,634</td>
<td>2.60</td>
<td>2736.1</td>
<td>1096.0</td>
<td>996.1</td>
<td>852</td>
</tr>
<tr>
<td>13</td>
<td>60,001,741</td>
<td>33,142</td>
<td>2.80</td>
<td>2739.8</td>
<td>1034.7</td>
<td>870.5</td>
<td>940</td>
</tr>
</tbody>
</table>

Table 1: Summary of results for the iterative procedure used to estimate the lowest cost resource set R that meets the reliability criteria.
Conclusions

• Proposal for running a capacity market
 – Motivated by inclusion of storage
 – Allows any technology to be included on a common basis
 – Auction commodity is not additive – any alternatives?
 – No schemes (?) for including VG and storage in auctions
 in a way which (a) properly reflects system risk profile,
 and (b) maintains an additive commodity

• Pre-print https://arxiv.org/abs/1907.05973