The use of distributed real-time simulation in the validation of systems readiness levels

M. H. Syed, E. Guillo-Sansano and G. M. Burt
Institute for Energy and Environment
University of Strathclyde
Glasgow, Scotland
Laboratory Interconnection: Prospects

• Validation acceleration
 – Integration of specialist skills
 – IP protection

• Comprehensive characterization
 – Integration of specialized equipment

• Effective Demonstration
 – Scalability
Validation Acceleration

Cluster capability
Validation Acceleration

Multi-Disciplinary/Multi-Specialization

- IP Protection, models do not need to be shared.
- In some cases, economically (logistically) efficient
Comprehensive Characterization

- Hybrid Electric Aircraft (HEA)
 - Coupled electrical and mechanical propulsion systems
 - New concepts, technologies and architectures
- Load management in Marine applications
 - Energy storage (prototype) for short term energy supply
- Integrated energy systems

Example distributed laboratories for HEA

Source: The ship is a Microgrid, M. Baker, https://info.typhoon-hil.com/blog/the-ship-is-a-microgrid
Systems Readiness Level

- Technology Readiness Level (TRL) is only valid for appraised functionality of/or a subsystem
- Integration Readiness Level (IRL) grades the integration of technology into a system

\[SRL = \min\{TRL_1, TRL_2 \ldots TRL_i, IRL_1, IRL_2 \ldots IRL_i\} \]

\[\frac{TRL}{SRL} \geq 1 \]

Source: NASA TRL
Impact of System Transformation – Great Britain

- Increased RoCoF
- Frequency/Voltage instability
- Controller interaction
- Increased sensitivity to load imbalance and harmonics

- Reduced fault in feed
- Sub-synchronous oscillations and interaction with conventional machines

Sources of UK energy between 12 and 18 April, 2018 (National Grid)
Tackling Grid Transformation

- **Enhanced Frequency Control Capability**
 - RoCoF triggered, regional, 100% active power < 1 second (target 500 ms)

- **Web-of-Cells:**
 - Alternative architecture to support increased decentralization and distributed operation.

Increased scalability?
Over thirty institutes from Europe and U.S. performing research related to Smart Grids (SG) integration of Distributed Energy Resources (DER)

- Accredited testing of DER-units and SG-equipment
- Support of SG development and integration of Renewable Energies
- Information and knowledge exchange
- Contribution to standardisation activities

Network of Excellence for Smart Grids
Enabling Distributed Laboratory Experiments

Distance: 21 km

[Diagram showing a map of Europe with nodes labeled RI1 RTDS and RI2 RTDS connected via GTNET, with a distance marker indicating 21 km.]
Distributed RT Challenges

- Analogous challenges to PHIL simulations:
 - Stability: system characteristics and interface
 - Accuracy: time delay
 - Initialization: subsystem inter-dependency
Addressing the Challenges

• Characterization of the delay
 – Contrary to widely deployed fixed deterministic delay, P-HIL delay is variable
 – Accurate compensation requires accurate characterization
 – Impacts stability

Addressing the Challenges

- Advanced time delay compensation technique
 - Not only accuracy but also stability

Addressing the Challenges

• Method for initialization and synchronization for large scale systems.

Milestones in Distributed Laboratory Couplings

01. Concept formulated
02. Fidelity Studies
 - RMS vs phasor
03. Development of interfaces
 - External phasor decomposition
04. Development of frameworks
 - Geographically dispersed PHIL VILLAS
05. Demonstrations
 - Trans-oceanic US-Australia
 Germany, Italy, Netherlands

Limitations of the approach in terms of capturing dynamics?
Applicability for Frequency Control

- Inherent Delay (D1) of the setup:
 - DPSL-PNDC ~8ms
 - PNDC to DPSL ~7.5ms

- Additional delay
 - D2= D1+8ms (each way)
 - D3=D1+16ms (each way)

- Event: Load step (1GW) in LFC 4

- Parameters to observe
 - Average system frequency
 - Average rate of change of frequency of the system
 - Active and reactive power at interface
Applicability for Frequency Control Studies - Fidelity

2-norm error=1.18%
Applicability for Frequency Control- Responsibilising PFC

A decentralized control
• Event detection within 100-150 ms

Applicability for Fault Analysis

- Event: 100 ms three phase fault at bus 4
- Same delays as before, D1, D2 and D3
- Parameters to observe
 - Interface Current
 - Total Fault Current
Resilient Wide-Area Backup Protection

- PMU-based wide-area backup protection
- Scalable through decentralized approach
- Distributed simulation enables comprehensive validation at full scale

Conclusions

• Distributed real-time simulation offers the promise of a number of discrete benefits.
• Complexity of problems being tackled within HIL environment is increasing.
• More rigorous understanding of the errors in distributed simulations is required and mitigating measures are being experimentally investigated.