TSAT-RTDS Interface
- The Development of a Hybrid Simulation Tool

Xi Lin, Pouya Zadehkhost
Powertech Labs Inc.

Jaegul Lee, Jiyoung Song,
Baekkyeong Ko
KEPCO

Kyeon Hur
Yonsei University

Presented at panel session “Challenges and solutions of interfacing techniques for EMT/TSA hybrid simulation - Industry perspectives”
2017 IEEE PES General Meeting
Power System Simulation Methods

- Power system dynamics are conventionally categorized into low- and high-frequency transients
- Two groups of industrial-grade tools have been developed based on this categorization

<table>
<thead>
<tr>
<th>Feature</th>
<th>Electro-Magnetic Transients (EMT)</th>
<th>Phasor Domain (TSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Programs</td>
<td>PSCAD, RTDS</td>
<td>TSAT, PSS/E, PSLF</td>
</tr>
</tbody>
</table>
| Level of details | ✓ Three-phase instantaneous values
 ✓ Detailed models | ✓ Phasor-domain positive sequence
 ✓ Simplified dynamic models
 ✓ Network dynamics ignored |
| Size of modeled system| ✓ Varies between a few to several hundreds of buses | ✓ Often used for simulating systems with tens of thousands of buses |
| Common Application | ✓ Any types of studies that need detailed modeling
 ✓ Hardware in Loop (HIL) simulation | ✓ Bulk power system planning and operation
 ✓ On-line Dynamic Security Assessment |
Conventional Simulation Methods - Challenges

- Can focus on either detailed models in small system or simplified models in large system
 - Increasing level of details without reducing system size can be costly
- Study interactions between system-wide events and detailed devices can be challenging, e.g.
 - Fault analysis in HVDC systems
 - Sub-synchronous resonance studies
- A detailed model might be available only in an EMT package, e.g.
 - HVDC systems, renewable generators, FACTS devices, etc.
- To built a full system model for EMT simulation is challenging
 - While this is a common practice in TSA studies
Hybrid Simulation

- Hybrid simulation approach addresses these challenges by using both EMT and phasor-domain simulation methods.

- Advantages
 - Effective in analyzing impact of low-frequency oscillations on specific components and vice-versa
 - A cheaper solution for studying large systems compared to full-EMT simulation
 - Takes advantage of rich modeling library available in EMT and phasor-domain simulation packages
 - Perform Hardware-In-Loop simulation with a large system model
TSAT-RTDS Interface (TRI)

- A tool for performing hybrid simulation studies
 - Using both TSAT from Powertech Labs and RTDS from RTDS Technologies
- TRI is developed with special focus on practical aspects
 - User-friendly, minimizing case setup efforts, simplifying results analysis steps etc.
- How does TRI work
 - TSAT simulates external system at normal time-step (e.g. 4ms)
 - RTDS simulates internal system at normal time-step (e.g. 50us)
 - Boundary injections are exchanged at the end of every TSAT time-step
TRI Structure

Xilinx VC707 FPGA Board
(mounted on PCI Express slot of PC which runs TSAT)

RTDS

FPGA Board

TSAT

RTDS Case

Internal System

Boundary 1

Boundary 2

Boundary 3

TSAT Case

External System

Boundary 1

Boundary 2

Boundary 3
Representation of External System in EMT

• Approach 1 – simple Norton (or Thevenin) Equivalent
 – External system is modeled as a Norton equivalent
 – Easy-to-use since TSAT automatically
 • calculates Thevenin impedance
 • updates Norton source current
 – High frequency transients of the external system are ignored
 • may fail when fault is applied at boundary
 – A buffer zone between internal and external systems is recommended
Approach 2 – Frequency Dependent Network Equivalent (FDNE)

- External system is modeled as a frequency-dependent mathematical model plus Norton current source(s)
- More accurate than Norton (Thevenin) equivalent
- May not need buffer zone
- Difficult to build the FDNE
 - Numerical stability
 - Computation burden on the EMT
 - Especially difficult for multi-port (2+)
- Handling network changes in external system is challenging
TRI Features

- Supports single-port and multi-port boundaries

One-port system

Two-port system
TRI Features (cont’d)

• Supports both (simple) Norton Equivalent and FDNE

• Potential TSAT-RTDS Configurations
Simulation Case Setup – RTDS Side

- RTDS case is being setup as normal
- With addition of GTFPGA and TSA-Interface

Handling data exchange with FPGA board

Custom model representing one TSAT boundary
Simulation Case Setup – TSAT Side

- TSAT case is being setup as normal
 - Commonly used planning data
 - With addition of the Hybrid Simulation data

Provided in a typical TSA study

Provided in hybrid simulation study
Defining boundaries between internal and external systems

RTDS quantities may be monitored on TSAT side (optional)
System Setup – Hardware

FPGA Board mounted on PCI Express slot

RTDS PB5 card connected to FPGA Board through an optical fiber
Starting Hybrid Simulation

TSAT waits during RTDS start-up

User notifies TSAT once RTDS starts-up (may automate this step in future)

Boundary mismatch during RTDS start-up can be monitored
Running Hybrid Simulation

TSAT and RTDS run simultaneously

A disturbance applied in one tool affects the other
Case Study #1

- IEEE 39-bus test system
- Fault applied in internal system (bus 28)
- Generator at bus 38 is monitored

Internal system modeled in RTDS
Case Study #1 – Generator Rotor Speed
Case Study #1 – Generator Terminal Voltage
Case Study #2

- IEEE 39-bus test system with 4 ports

External System
Internal System
Case Study #2 – Generator Rotor Speed

Graph showing the comparison of generator speed with RTDS Only, Hybrid Simulation, and TSAT Only.
Case Study #1 – Generator Terminal Voltage
Case Study #3

- A practical case with 2189 buses and 459 generators
 - Two generators modeled in RTDS
 - Rest of system is modeled in TSAT (2 ports)
- Contingency description
 - Fault is applied on TSAT-side (2 buses away from one of boundaries)
 - Cleared after 0.1 seconds
- A generator close to fault is monitored
- Long time simulation test
 - The fault is applied and cleared every ~200 seconds
 - Simulation ran for 3 hours
 - TSAT simulation keeps synchronization with RTDS
 - Hard real time
 - Using a Intel Core i7 7700K 4.2 GHz CPU (one core is used) and 32 GB RAM
 - 4ms time-step on TSAT side (50us on RTDS side)
Case Study #3 – Generator Rotor Speed

![Graph showing generator rotor speed over time]

- **Hybrid Simulation**
- **TSAT Only**
Case Study #3 – Generator Terminal Voltage
Summaries

• Why using hybrid simulation?
 – Takes advantage of both EMT and phasor-domain simulation packages
 – Facilitates analyzing interactions between low- and high-frequency transients

• TSAT-RTDS Interface
 – Performs hybrid simulation studies using TSAT and RTDS
 – Practical aspects have been one of the main objectives
 – Preliminary testing demonstrated that the tool is promising
 – Allows monitoring interactions that may be missed in pure EMT or pure phasor-domain simulations