

EPRI HVDC Program Update

Dr. Ram Adapa, Fellow IEEE Technical Executive, EPRI radapa@epri.com

IEEE HVDC & FACTS Subcommittee Meeting Atlanta, GA August 7, 2019

EPRI HVDC Program Objectives

- Technology awareness to plan and deploy HVDC
- Data and information for the selection and replacement of a HVDC system and its components
- HVDC concepts to improve system reliability, to increase capacities and to interconnect renewable power sources

www.epri.com

Research Strategy

HVDC Program Team Members

Ram Adapa, Technical Executive radapa@epri.com Tel: 650.855.8988

Gary Sibilant, Program Manager gsibilant@epri.com Tel: 704.595.2598

Alberto del Rosso, Principal Project Manager adelrosso@epri.com Tel: 865.218.8137

Justin Bell, Research Engineer jbell@epri.com Tel: 413.445.3712

John Kuffel, Consultant jkuffel@epri.com Tel: 416.565.1066

Jonathan Ruddy, Engineer/Scientist II jruddy@epri.com Tel: 650.855.7904

2019 Activities

Task Force: HVDC Program

Chair: Mike Staats, BPA

Task Force meetings:

- 1st meeting Task Force Week in Charlotte (March 14)
- 2nd meeting Along with HVDC & FACTS Conference in Palo Alto (September 24)

HVDC and FACTS Conference:

– EPRI Palo Alto Office, September 25-26

Webcast:

- November 14
- 8:00 am Pacific Time

HVDC & FACTS Conference September 25-26, 2019 **EPRI** Palo Alto Office

2018 HVDC Structure

HVDC Converter Stations and FACTS Technologies (P37.116): Research Tasks

- 1. Assessment and evaluation of HVDC & FACTS technologies
- 2. Provide State-of-the-art information on HVDC & FACTS
- 3. Assist members selecting options for renewable integration and increased transmission capacity
- 4. Develop Operation, Maintenance, and Replacement Strategies
- 5. Update the HVDC Reference Book (Olive Book)
- 6. Innovate and Demonstrate New Concepts
- 7. Identify opportunities to reduce costs of HVDC & FACTS
- 8. Technology Transfer Newsletter, workshop, and conference

Value:

- Keeping utilities abreast of HVDC & FACTS technologies
- Additional revenue to utilities by increasing transmission capacity using HVDC & FACTS
- Assisting utilities with best practices for operation & maintenance
- Providing a technical forum to interact & share with other utilities

HVDC Reference Book – 30 Chapters

- 1 Introduction
- 2. Overview of HVDC Transmission
- 3. Analysis of Converter Operation
- 4. Configurations of HVDC Transmission Systems
- 5. Components of an HVDC Transmission System
- 6. Planning and System Design
- 7. Control and Protection
- 8. Reactive Power
- 9. AC-DC Interactions
- 10. Interference Effects from Converter Operation
- 11. Insulation Coordination
- 12. Converter Station Equipment
- 13. DC Transmission with Voltage Source Converters –(2018 update)
- 14. DC Trans with Series Cap Compensated Converters

HVDC Reference Book – 30 Chapters

- 15. Overhead Lines for HVDC Transmission
- 16. HVDC Cables (2018 Update)
- 17. Simulation of HVDC Systems
- 18. Reliability and Availability
- 19. System Efficiency
- 20. HVDC System Cost Estimates
- 21. System Studies
- 22. Commissioning of HVDC Systems
- 23. HVDC Project Implementation
- 24. Operation and Maintenance
- 25. Life Extension of HVDC Systems
- 26. AC to DC Line Conversion
- 27. HVDC Ground Electrodes
- 28. Integrating HVDC into AC Grid
- 29. DC Grids

30. HVDC Live Line Work Practices (will be added in 2019)

Proposed 2019 Deliverables

- 1. Updated HVDC Reference Book Olive Book
- 2. HVDC & FACTS Tech Watch Newsletter
- 3. HVDC & FACTS Conference
- 4. Single Arm Modular Multilevel Voltage Sourced Converter Concepts - Prototype Development
- 5. Best Practices for Operation, Maintenance, and Refurbishment for Life Extension of **FACTS** Controllers
 - FACTS Valve Cooling System Life Assessment Study
 - Novel STATCOM Control Strategies to Operate as Active Filter

P36 Underground Transmission Structure – 2018

EPRI's R&D - P36.008 HVDC Cable Systems

Key Research Question:

- Significant growth in HVDC Cable Systems for grid integration & interconnections including renewables (e.g. offshore wind) integration
- HVDC Land and Submarine Cable Systems lengths increasing
- Advances in HVDC Cable and Converter Technologies
- Additional manufacturing capacity more HVDC manufacturers [e.g. Prysmian, Nexans, Sumitomo (J-Power Systems), NKT, LS Cable, Furukawa Electric, Zhongtian Technology Submarine Co (ZTT)]
- Objective:
- Develop tools and methods for utility engineers to effectively apply HVDC cables

P36.008 HVDC Cable Systems

Approach:

- Investigate & Evaluate design tools to prepare feasibility studies
- Evaluate cable insulation materials and aging characteristics for optimal designs
- Develop methods to extend the life of HVDC cables
- Evaluate operational practices in application of HVDC cables based on technical and economic benefits
- Evaluate condition assessment, maintenance, inspection, and fault location methodologies.

Research Value:

- Research produces new understanding, methods, and tools for utility engineers and designers for HVDC cable applications, operation, and maintenance.
- Use of reference books and design tools may result in more effective designs
- Effective inspection and monitoring of assets may lead to increased asset utility and improved reliability.
- Better understanding of failure mechanisms and prevention procedures may extend asset life and prevent unexpected outages

2019 Deliverables

TITLE

EPRI High Voltage Direct Current (HVDC) Transmission Reference Book (Olive Book) – 2019 Update (Report) (3002015538) Methods and Case Studies for HVDC Cable Ampacity and Cable Insulation Electric Stress Calculations for Utility Users - Procedures for Underground Transmission Workstation Implementation (Report) (3002015539)

Feasibility of Applying HVDC Underground Cable Systems for Power Transmission – Case Study (Report) (3002015541)

HVDC Performance and Effects (P35.019)

		Pe	rform	an	ce					
💀 HVDC 2017	: Proof of Co	ncept						-		Х
File Tools	Help									
Using enter 1 param	DC 2017 : the fields below the Ground Wire eters for your lin	Proof of Con enter the Phase Win e parameters that main e. DC WIRES MUST	ncept re parameters tha ke up your line. 1 T BE ENTERED	t make u The Profil FIRST!	up your i le / Misc	AC/DC line c tab allows	e. Use the G s you to ent	around Wir er the calo	re tab to culation	
Phase Wires Gr	round Wires P	rofile / Misc.								
Phase Parame A	ters C/DC/ Neutral	DC v			Gradier	nt Inception	n (kV/m)			
	Voltage (kV)				(m)					
Number of	Phase Angle(*)				Attachment Point 1				(m)	
Subconducto	Subconductor Diameter (cm)			ttachment	Point 2		(m)			
	Spacing (cm)						Sag		(m)	
	Apex/Side	Down 🗸							Add	i l
Phase Wires										
AC/DC V((V) Angle (°)	#Subs Diam (cm)	Spacing (cm)	iDown	X (m)	AP 1 (m)	AP 2 (m)	Sag (m)	GI (kV/r	m)
<	1						_			>
View								Delete	ltem	
	•Fields and Effects									
	•Space Charge									
		•Hyb	rid Lir	ies						

- Hardware Corona Specifications
 - Insulators
 - Electrode Lines

		Relen	ence		
erren (: H	igh Vol Tran	ltage Dire smission l	oct Currei Reference	nt (HVE 2 Book	>C)
				J.	
5		chy		the state	1
	1 ² 1	AN)	1717		

- HVDC Reference Book
 - The Olive Book

Design Guide Contents – End of 2018

- Introduction
- Guide Outline
- Line Performance
- Ground Electrodes
- Conductor Selection
- HVDC Insulation
- Hardware Corona • Testing
- Live Line •
- Electrical Effects •

Updated Chapter in 2019

Live Line Working

2019 Deliverables

Product ID	Product ID Deliverable Title	
3002015660	Pre-SW TLW Gen 2 – HVDC Electrical Effects Module (BETA)	12/31/2019
3002015661	TLW-Gen2 – HVDC Calculations	12/31/2019
3002015662	HVDC Overhead Line Design Guide	12/31/2019
3002015538	HVDC Reference Book: Olive Book	12/31/2019

HVDC Planning

R&D Goal

- Increase planner's knowledge on the potential benefits and challenges of the (1)implementation of HVDC technology,
- Provide systematic approach and tools for planning transmission solutions with HVDC (2)

Deliverables R&D Approach HVDC Planning Case Study [Tech Update] HVDC Planning Case Study - Case study to illustrate procedure in HVDC Planning guide [Tech Update] HVDC Planning Guide [Tech Brief] Integration of Offshore Windfarms н. Update HVDC Planning Guidelines with HVDC [published] Expand guidance on the use of HVDC technology for integration of off-shore wind generation Update to HVDC planning guide developed in 2015/16

PROGRAM

PROJECT

40

24B

Integration of Offshore Windfarms with HVDC

Considerations for Utilities Planning

- Outlines considerations for planning integration of offshore wind farms with HVDC transmission via subsea cables.
- Describes the need for specific planning techniques, modeling and analysis tools
 - Feasibility analysis
 - Offshore planning issues
- Updated version delivered this year for P40.24

Guide to understand the issues surrounding interconnection offshore wind farms via HVDC in a planning context

Case Study – with thanks to SPP

Assumed future scenario of large integration of solar generation

Source: https://www.spp.org/documents

Key Supplemental Projects

Project	Description			
	Applications of Research Results			
Member Specific Member Specific	Integration of HVDC into AC Grid – Application to Specific Utility Systems Life Extension Guidelines Application to HVDC Converter Stations – Application to Specific Utility Converter Stations			
Industry Issues				
105557	Minimum Approach Distances for HVDC Live Work Measurements of HVDC/Hybrid Electrical Effects (Scoping and evaluating Member interests)			

Integration of HVDC into AC Grid – Application to Specific Utility Systems

Objectives and Scope

- Build on the results from the base funded project.
- Perform utility specific system studies (load flow and stability) considering HVDC additions to the existing AC grid.

Value

Increase Understanding:

- Power flow optimization
- Power oscillation damping
- Transient stability improvements
- Sub-synchronous Resonance damping
- Special protection & control strategies
- Coordination of dc control with ac network controls including generator controls

Details and Contact

- Price: \$100k to \$200k (varies with size of system & tasks)
- Qualifies for TC & Self-Directed Funds

Ram Adapa

radapa@epri.com, (650) 855-8988

Life Extension Guidelines Application to HVDC Converter Stations

Objectives and Scope

- Assess service life of converter station components & provide recommendations including:
 - Converter transformers
 - Valves & Valve hall
 - Controls & Cooling system
 - Filters

Value

- Statistical life spans of components
- Converter Station on-site evaluation
- A technical report with recommendations whether to repair or replace

Details and Contact
Price: \$110k
Qualifies for TC & Self-Directed Funds
Ram Adapa
radapa@epri.com, (650) 855-8988

Minimum Approach Distances for HVDC Live Work

Objectives and Scope

- Develop safe distances for live-work
- Conduct flashover tests at EPRI Lenox lab to
- Investigate space charge effects
- Determine flashover of the air gaps

Value

- Avoid outage for maintenance
- Ensure worker safety
- Current minimum approach distances were estimated by extrapolating data on AC flashover values

Details and Contact

- Price: 50k per year for three years or \$150k total
- Qualifies for TC & Self-Directed Funds

Gary Sibilant

gsibilant@epri.com, (704) 595-2598

Measurements of HVDC/Hybrid Electrical Effects

Objectives and Scope

- Better understanding and management of electrical effects
- Procurement/fabrication of instrumentation
- Measurements on operating lines: multiple lines, multiple times, various climatic conditions
- Algorithm updates and validation

Value

- Provide scientific evidence on the prediction of electrical effect values
- Provide technical support for applications of HVDC and hybrid lines as a viable technology
- Address permitting and public concerns
- Optimize the design and operation of lines

Details and Contact

- •Price: 50k per year for three years or \$150k total
- Qualifies for TC & Self-Directed Funds

Gary Sibilant

gsibilant@epri.com, (704) 595-2598

Unbalanced Current Static Compensator (UCSC)

Objectives and scope

- Current unbalances in the utility three phase distribution systems causing neutral currents
- Develop a prototype of Medium Voltage (MV) UCSC using SiC devices for direct connection to distribution systems without the use of transformers
- Cofunded by Southern Company & AECC (Arkansas Electric Cooperative Corp)

Value

- UCSC balances all three phases and eliminates neutral currents and the associated losses.
- Reduces the need for building additional feeders

Schematic of MV–UCSC for 3 Phase, 4 Wire Distribution System

Details and Contact

- Price: \$150 k per utility (\$75 k per year for 2 years)
- Qualifies for TC and SDF

Ram Adapa

•radapa@epri.com, (650) 855-8988

A new FACTS/Custom Power Device for balancing load on all 3 phases

Together...Shaping the Future of Electricity

