Segmentation

Harrison K. Clark Presented by: Dennis Woodford

Segmentation

Use dc to segment large ac grids into smaller synchronous ac segments

□ Precedent:

- Texas
- Hydro Quebec
- WECC-Eastern Interconnection
- Norway
- India
- Australia (Tasmania)

Segmentatio n

- Propose ac islands of (roughly) 10GW to 60GW
 - Convert existing longer regional ac ties to HVDC
 - Bipole
 - Tripole
 - Insert back-to-back dc converters in remaining ac ties
 - Conventional dc
 - Voltage Source Converter, or
 - Variable Frequency Transformers

Example

Boundary Selection Criteria:

Boundaries formed according to:

- Locations that require least back-to-back MVA
- Locations that break up stability limited paths
- Congested paths that need more transfer capability
- Where longer DC lines can be formed from existing ac lines
- Political boundaries where practical
- □ An optimization problem!

Select segment boundaries

Form synchronous ac segments (islands)

Concatenate some ac circuits to make longer dc lines

Future – add long haul HVDC lines

\$

₩

Why Segmentation?

- Difficulties with Existing Large ac Grids:
 - Disturbances can propagate across ac grids
 - Vulnerability to simple sabotage strategies
 - Transfer capability limited by:
 - Angular stability, voltage stability
 - Loop flows
 - N-1 and N-2 contingencies
 - Limited ROW power densities (relative to dc)

- Reduced risk of widespread blackouts
- Intra-segment blackout risk is lower
- Cascading/collapse is limited to one segment
- Reduced operational complexity & uncertainty
- Inter-area power flows where it is directed
 - Schedule for lower ac losses
 - Schedule for best use of ac line capability

Substantial increases in transfer capability

- Conversion of ac to dc
 - Bipole
 - Tripole
- Back-to-back converters control flow on upstream and downstream ac system
 - Back-to-back tie and dc line power can be stepped down to cover upstream and downstream ac contingencies
 - By operator for N-1 (prepare for next N-1)
 - By SPS for N-2 (automatic)
 - Allows higher loadings of adjacent ac circuits

Facilitates grid planning & investment decisions

- More predictable capability of upgrades
- More predictable impacts & usability of upgrades
- Stability is no longer an issue (some intrasegment)
- Market benefits
 - Enhanced commodity values and trading opportunities
 - Simpler and more easily applied and policed market rules
 - Less uncertainty over rights to transmission upgrade capacity

Makes WAMS easier and more effective

- Intelligent/self-healing grid becomes feasible
- State Estimators perform much better
 - Finite segments
 - Simple neighboring system model (boundary flows)
 - SE based applications far more useful & reliable

Existing Interconnection Benefits Remain

Traditional benefits:

- Generation sharing
- Reserve sharing
- Emergency response
- Firm transfers
- Economy transfers

□ Most are increased or improved

Power Can Be More Precisely Scheduled:

- □ For lowest losses
- Where intra-segment line capacity is available
- □ Where total transfer can be maximized
- To accommodate intra-segment maintenance
- Power can be routed via multiple segments
- □ For market management
- Involves multiple segments ... requires coordination

 "Governors" on dc lines and back-to-back converters replace Kirchoff's laws, synchronizing power, powerangle, etc.

- Loss of generation in segment A
- Frequency drops in segment A, generators in A respond, ties to adjoining segments ramp up
- Segment B frequency decays, generators in B respond, ties to adjoining segments ramp up
- Segment C frequency decays, generators in C respond, ties to adjoining segments ramp up, etc.
- UFLS may occur in segment A; might also be allowed in segment B for a problem in A

- □ More and larger frequency excursions
 - A bad thing?
 - No, a good thing!
 - Just ask the folks in Texas
 - When system frequency excursions occur
 - Generator governors and firing systems are exercised
 - Generator response problems are identified and fixed
 - Governing and boiler equipment is adjusted for best performance
 - Generator response is more predictable and reliable

- dc tie governors limit assistance to neighbors;
 - Within spinning reserve and/or UFLS tolerance
 - Within thermal/voltage capability of ties and associated ac circuits
 - Different limits for each direction
- Bottom line -- Provide as much assistance as you can without jeopardizing your own system
- Neighboring segment allowed to collapse without taking neighboring segments with it

- □ Automatic central control?
 - Not essential, but interesting possibilities
 - Local controls must backup central controls
 - Pre-set tie governor dp/df and maximum power
- Many central control possibilities
 - For steady state optimization
 - Minimize losses
 - Maximize total flow capability (normal or emergency assistance)
 - Accommodate intra-segment constraint(s)
 - For emergency response (fast, automatic)
 - Reroutes power upon local problem
 - Responds to requests from neighboring segments
 - More or less transfer (before frequency decays)
 - Different route (to accommodate grid problems in neighboring segment)

Cost

- Huge cost, huge benefits
- □ Who pays?
 - Private party investment for incremental transfer capability
 - a business opportunity
 - Public investment for increased reliability
 - Resistance to malevolent attack (Federal)
 - Social benefits of fewer and lesser blackouts
 - Market benefits?

More to Think About ... Is grid reliability dropping?

- Every line and transformer addition or upgrade loads upstream, downstream, and parallel lines and transformers more heavily;
 - Average line loading is thus increasing over time, and this
 - Increases stress on the grid, making N-1 events more likely
- The same additions/upgrades also lead to uniformly heavily loaded lines thus;
 - Leading to multiple limiting N-1 contingencies
 - And multiple "most heavily impacted" elements
- □ This combination leads to;
 - The system is "tested" more frequently
 - Each test has higher risk of compounding events and cascading
- Beyond the above, an increasing share of N-2 events are troublesome

More to Think About . . .

Heavily loaded systems

- Huge reactive supply and losses
- Increasingly difficult reactive balance
- Greater increase in I²X losses upon N-1 events

More to Think About . . .

 Criteria/Standards are not being adjusted to accommodate these effects

- □ Can we halt the reliability decay?
- Is Segmentation the answer or part of the answer?

