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Outline

Optimization-enabled transient 
simulation – A Powerful design tool
Application to the controller design 
of a 200 MW HVDC Transmission 
System

Incorporating multiple objectives
Selection of Objective function
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Design Objective: System response to 
be immune against ac voltage 
magnitude and phase changes.
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Design, Optimization and Simulation
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Design Using Simulation – Multiple Run
(brute force approach)

Multiple simulations for 
several sequentially- or 
randomly-generated 
points;

The best-performing 
point is singled-out.
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Optimization-Enabled Transient 
Simulation – smart approach

A mathematical 
optimization algorithm
strategically selects the 
trial points
Result- orders of 
magnitude less runs 
than with brute force 
approach
Non-linear Simplex 
Method of Nelder and 
Mead used in paper
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Nonlinear
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How is this different from 
conventional optimization ?

Conventional Optimization: 
Find (x1,x2,…xn) which 
minimizes an explicit OF: 
f(x1,x2,…xn)

Simulation based 
optimization: The 
mathematical form of the 
OF is unknown- it is 
determined from the 
simulation
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(x1,x2,…xn) Emtp-
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Design Objective: Immunity against ac 
voltage magnitude and phase changes.
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Design Sequence

HVDC model is run to steady state with initial parameters and 
a “snapshot” is taken.

Optimization sequence of simulations is initiated starting from 
the “snapshot” (t=0) with applied disturbances:

t= 0.1 s: phase of the inverter side ac source reduced by 15o

t= 0.6 s: phase increased by 15o. 
t= 1.1 s: magnitude of the ac source voltage reduced by 7% 
t= 1.6s: the magnitude restored to its original value.

Optimal parameter set emerges when the convergence 
criterion is satisfied.
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Pre- and post- optimization HVDC Response
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a) Initial Parameter Set                                   b) Optimized Parameters

HVDC Response to AC Voltage Phase and Magnitude Changes
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Selection of Objective Function  

Simulation with initial parameter   set shows 
poorest response between 1.1s and 1.65s.

Selected OF penalizes current deviation from 
reference, and particularly targets the [1.1 s, 
1.65 s] interval.

 1.1 1.65 4.0
2 2 2

0 1.1 1.65
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Other optimization refinements

Optimization with objective to de-sensetize
against voltage changes gave poor 
performance for set-point changes

Hence the system was re-optimized with an 
additional current order set-point change in 
the simulation
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Optimization to de-sensitize against ac voltage 
variations and give good dynamic response
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a) Pre-optimization OF=62.5
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b) Post-optimization OF=27.5
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Optimization Performance
Table 1. Initial and Optimized Parameters 

 
 Initial Parameters Optimized Parameters 

Gain (rectifier) 1 1.04 
Time constant (rectifier) 0.3 0.007 

Gain (inverter) 1.44 0.3 
Time constant (inverter) 0.0083 0.033 
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200•OF reduced from 62.5 to 27.5 in  
108 runs.

•With 10 steps in each of 4 
variables, traditional multiple-run 
techniques would require 
104=10,000 simulation runs.

•2 Orders of Magnitude time 
savings!
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•An Example of an  Optimization Algorithm

–Gradient-like algorithm
Simplex Method of Nelder

and Mead

Simplex optimization method in 2D, e.g. finding Kp and Ti for a PI controller
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Conclusions

Optimization-enabled simulation design 
where no explicit OF is available
The method can succesfully be applied to the 
design of HVDC Controllers to satisfy multiple 
objetives
Objective Function must be carefully chosen 
with appropriate weights to different 
objectives
Potentially results in orders of magnitudes in 
computer time in design applications
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Thank You
Contact

Ani Gole

Email: gole@ee.umanitoba.ca
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