

Cigre – 473: Some Key Points Concerning **Fields and lons** • Data from operating lines are inadequate to fully characterize performance or validate calculations No scientific or regulatory bodies suggest any health risk – although perceptions are recognized ICNIRP (International Commission on Non-Ionizing) Radiation Protection) of WHO (World Health Organization) makes no recommendations for limits • Cigre recommends consideration, particularly during design phase • Cigre considered only monopolar and bipolar-horizontal lines (not vertical, hybrid, converted lines, shield wires, etc.) © 2014 Electric Power Research Institute, Inc. All rights reserved. 6

Measured Median Fair Weather Ground-Level Field and Ion Levels of HVDC Lines									
HVDC Line	Conductor Bundle (n x cm)	Line Height (m)	Line Spacing (m)	Electric Field (kV/m)		Current Density (nA/m²)		lon Density (ions/cm³)	
				+pole	-pole	+pole	-pole	+pole	-pole
								+ions	-ions
Square Butte (+/- 250 kV [13]	1 x 5.04	10.7	7.6	8	-6	8	-5	54,300	34,700
CPA-UPA (+/- 400 kV [15]						2			
Minnesota	2 x 3.82	15.2	12.2	13	-9	10	-5	41,800	23,100
North Dakota	2 x 3.82	10.7	12.2	23	-16	46	-19	108,700	49,500
Pacific Intertie (+/-500kV) [34]	2 x 4.58	12.2	12.2	20	-16	36	-20	97,800	52,100
Nelson River (+/- 450kV) [14]	2 x 4.07	15.3	13.4	12	-12	15	-9	67,900	31,300
Quebec-New England I (+/-450 kV [18]	3 x 5.04	12.2	16.0	18	-11	25	-9	75,500	34,100

Table 10-6 Typical Electric Field and Ion Densities	
Conditions	Electric Field
Fair weather, outdoor open space	100 to 500 V/m
Storm fronts, over land	+/-3 kV to +/-10 kV/m
Storm fronts, over water	+/-10 kV/m to +/-40 kV/m
Static electric field of clothing	100 kV/m
Typical HVDC lines at peak of lateral profile	
During fair weather	+/-15 kV/m
During rain or high-corona conditions	+/-30 kV/m
Conditions	Ion Density (both ion polarities)
Fair weather, outdoor open spaces	700 to 1000 ions/cm ³
Family room	400 to 800 ions/cm ³
Family room, candle lit (9 candles)	Up to 27,600 ions/cm³
12 inches above burning candle	200,000 to 300,000 ions/cm ³
200 feet from small waterfall	1500 to 2000 ions/com ³
20 feet from highway (30 vehicles/minute)*	6900 to 15,000 ions/cm ³
5 feet downwind of car exhaust	34,500 to 69,000 ions/cm3
Downtown large urban area*	Up to 80,000 ions/cm ³

Tolerability Criteria

© 2014 Electric Power Research Institute, Inc. All rights reserved.

- The interaction of the dc electric field and ion current with persons and objects can lead to sometimes perceivable proximity effects.
- The effects can include hair stimulation and spark discharges. Because of the lower current flux under dc lines and the differences between ac and dc field and currents, these effects are less pronounced than analogous effects under high voltage ac lines.
- The magnetic fields of dc lines produce no perceivable effects. The dc line magnetic fields are in the same range or less than that of the Earth's natural magnetic field. No state has guidelines specifically limiting the magnetic fields of HVDC transmission lines.

40

Table 10-9 Electric Field and Ion Sp	ecifications		
Case	Pea	Beyond ROW	
Severe Specifications	Ion Flux	20 nA/m ²	1 nA/m ²
	Ion Density	2 x 104 ions/cm ³	0.5 x 104 ions/cm ³
	Electric Field	20 kV/m	5 kV/m
Base Case Specifications	Ion Flux	100 nA/m ²	5 nA/m ²
	Ion Density	105 ions/cm ³	2 x 104 ions/cm ³
	Electric Field	40 kV/m	10 kV/m
No Specifications	No electric field height and ROW considerations.		

Table 10-11 Audible Noise Levels of HVDC Lines						
HVDC Line	Conductor Bundle (n x cm)	Line Height (m)	Line Spacing (m)	Audible Noise Median Level (dB-A)	Distance from Conductor (m)	
Pacific Intertie +/-500 kV [33]	2 x 4.58	12.2	12.2	36	12	
Nelson River +/-450 kV [14]	2 x 4.07	15.3	13.4	40	34	
Quebec-New England I +/- 450 kV [18]	3 x 5.04	12.2	16.0	34	13	

Summary of State Noise Regulations SUMMARY OF STATE NOISE REGULATIONS Maximum Noise Allowed Day Night¹ State Comments Colorado 55 50 Illinois2 55 45 Class A noise source3 55 45 Class B noise source³ 61 51 Class C noise source³ New Jersey 65 50 Oregon⁴ 60 55 Lı All private property 55 50 All private property L10 50 All private property 45 150 Notes: Nighttime is normally defined as 10 pm to 7 am except in Colorado where it is 7 pm to 7 am. Regulation specifies octave band levels; dB(A) values in table are estimated from octave band levels. Classes A, B, and C are roughly equivalent to residential, commercial, and industrial. Transmission line right-of-ways are included in class C land use. Levels are statistical levels, L_x, which may be exceeded only x% of the time in quiet areas. EPPI ELECTRIC POWER RESEARCH INSTITUTE © 2014 Electric Power Research Institute, Inc. All rights reserved. 44

Table 10-14 RI Levels Along Ope	erating Lines and Other Situatio
Situation	RILevel dB (1µV/m)
Pacific NW-SW Intertie [13.60] Surface Gradient 20.9 kV/cm (19m from conductor)	51 dB
Dalles Test Line [13.60] Surface Gradient 25.5 kV/cm Surface Gradient 28.05 kV/cm (18 m from conductor)	64 dB 65 dB
Shiobara Test Line [13.60] Surface Gradient 22.5 kV/cm Surface Gradient 25.0 kV/cm (15 m from conductor)	52 dB 57 dB
1m From Ignition System of Car	65 dB
Outdoor Ri Level: Overcast	40 0B

Ground Electrode

© 2014 Electric Power Research Institute, Inc. All rights re-

In spite of the fact that a ground electrode is technically feasible and will work properly, it is very likely that there will be substantial opposition to a ground electrode. This can cause substantial delays to the project, increased costs and may in fact never be approved. The concerns are materials from the electrode leaching into the ground water, potential corrosion, lack of understanding and just opposition to ground inject for the fear of the unknown. The fact that there is an alternative such as the neutral return conductor while expensive will make it even harder to convince the public that a ground electrode is necessary.

There is a perception that no ground electrodes are allowed in the USA. Under The National Electric Safety Code (NESC) C2-2012, prohibits the continuous use of ground as a current carrying conductor.

For this reason, after 1993, monopolar HVDC systems built in the United States must have a metallic return. However, NESC regulations allow for the monopolar ground return mode of operation for bipolar HVDC systems for a limited period of time for maintenance or during emergencies. NESC regulations do not specify what conditions are considered as emergencies or elaborate on the limited time period available for maintenance. The application of these restrictions is evident in recent point-to-point HVDC schemes. The Neptune Cable HVDC link is a monopolar, line–commutated, converter-based system with a metallic return The Trans Bay Cable link uses Voltage Source Converter (VSC)-based technology, and the concept does not require an electrode. There are 4 existing Bipole HVDC schemes in the USA which have ground or sea electrode but these are thought to be "grandfathered".

47

EPPI RESEARCH INSTITUT

