

Predicting Power Flow and Weather Stressors from Synthetic Grid Data

Hao Zhu

Associate Professor The University of Texas at Austin

Team: Dr. Farnaz Safdarian (TAMU), Wei-Chun Chang, Young-ho Cho, Shaohui Liu (UT-Austin) *Acknowledgements:* NSF Grants 2130706 and 2150571

Weather-informed grid operations

Motivation

- Weather mostly used for long-term grid planning
- Daily operations increasingly affected by weather
- Weather-power flow (PF) coupling
 - How to directly predict grid operational stress from weather forecast?
 - What are the key weather factors affecting grids?

Synthetic grid dataset

- Texas synthetic grid 6717-bus case
 - ERCOT's full system with 8 regions
 - Renewable (wind/solar) generations
- Weather inputs [Overbye'23]
 - 137 weather stations
 - Temperature
 - Wind speed
 - Solar irradiance X cloud coverage

Weather-PF coupling

- Hourly PF outputs
 - Bus voltage
 - Line flow (to be analyzed)
 - PowerWorld OPF solver

- > All the data in the year of 2016
 - 8784 samples in total
 - Per unit (pu) voltage [0.94, 1.48]

Voltage outputs

Mostly > 1.0 pu

- Some extreme high values
 - Solver setup

Variability of voltage still useful

Voltage prediction

- Training/test split: 80%/20%
 - Graph neural network (GNN)
 - Autoencoder:

best prediction

- Sparse autoencoder:
 - for identifying stressors
- Why not use the load input?

Identifying weather stressors

- Sparse autoencoder: promote 0's in encoder matrix
 - Highly correlated weather features
 - Very few underlying stressors (latent variables)
 - Sparse mapping from weather input

Temperature

> 5 active temperature locations

- Similar temp. across the state
- Cover ERCOT regions in:

North, Farwest, Central, South

Wind speed

Multiple wind locations

- Wind patterns very diverse
- Related to wind farm locations

Solar input

A dozen of solar locations

- Related to solar farm locations
- Possibly affecting load demand

Conclusions

- Weather-aware grid operations
 - Predictive modeling of PF outputs
 - Identifying weather stressors

- > Ongoing directions:
 - General PF outputs (line flow?)
 - Detailed ERA5 weather data

Hao Zhu

haozhu@utexas.edu http://sites.utexas.edu/haozhu/ @HaoZhu6