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Motivation

❑ Increasing aggregated DERs & uncertainties in renewables made it difficult for ISOs to 
obtain high quality solutions to unit commitment (UC) problems in a timely manner.

❑ UC problems are formulated as mixed-integer programming (MIP). MIP solvers (e.g. 
Gurobi, CPLEX) play a key role in obtaining high-quality solutions.

❑ Traditional paradigm: on each day, the day-ahead UC task is treated as a brand new 
optimization problem.

❑ Insight: The previous UC problems’ solutions provide useful information that can be 
used to improve the solution quality of similar UC problems.

❑ Recent advancements in Graph Neural Networks (GNN) make it a good tool to improve 
the performance of MIP solvers.



Overall Framework1

❑Neural Diving: trained to find high-quality 
variable assignments

➢ Input: physics-informed spatio-temporal graph

➢ Output: decision variable assignments

➢ Label: high-quality feasible solutions

❑Neural Branching: trained to select the ideal 
variables for branching

➢ Input: MIP-based bipartite graph

➢ Output: branching scores of variables on each node

➢ Label: expert branching variables (e.g. strong branching)

[1] Jingtao Qin and Nanpeng Yu, "Solve Large-scale Unit Commitment Problems by Physics-informed Graph Learning, " https://arxiv.org/pdf/2311.15216.pdf.

https://arxiv.org/pdf/2311.15216.pdf


Preliminaries: Diving
❑ Diving is a set of primal heuristics of exploring the branch-and-bound tree in a depth-first manner.

❑ It involves sequentially fixing integer variables until either a leaf node is reached or the linear 
programming (LP) problem becomes infeasible.

❑ The diving approach in our work is performed only on the root node.



Preliminaries: Strong Branching

❑ Brief Introduction to Strong Branching

➢ The measurement for the quality of branching on a variable is the improvement of the dual bound.

➢ The strong branching (SB) score of branching on variable 𝑥𝑖 can be calculated as:

𝑆𝐵𝑖 = 𝑚𝑎𝑥 Ƹ𝑧𝑖
− − Ƹ𝑧, 𝜀 × 𝑚𝑎𝑥 Ƹ𝑧𝑖

+ − Ƹ𝑧, 𝜀

Ƹ𝑧: LP value of the node

Ƹ𝑧𝑖
−, Ƹ𝑧𝑖

+: LP values of children nodes

𝜀: a small constant (e.g. 10−6)

➢ Pros: Can identify critical variables that have a significant improvement of the dual bound.

➢ Cons: Computationally expensive



MIP model-based GCN for Neural Diving & Branching

❑ Graph Definition & Features

Table: Features of different nodes in the bipartite graphFormulate a Generic MIP as a Bipartite Graph1

❑ The bipartite graph is defined as: 𝒢 = (𝐶, 𝐸, 𝑉)

✓ 𝐶: the set of constraint nodes. 𝐸: the set of edges. 𝑉: the set of variable nodes

[1] Deep Mind, Google Research ”Solving mixed integer programs using neural networks.” arXiv preprint arXiv:2012.13349 (2020).



MIP model-based GCN for Neural Diving & Branching

❑ Two graph convolution layers have the same network 
structure but are initialized with different weights.

❑ For V to C convolution layer, nodal information are 
propagated using the operator below:

𝑥𝑖
′ = 𝑊𝐶𝑥𝑖 + ෍

𝑗∈𝒩(𝑖)

𝑊𝑉𝑥𝑗 + ෍

𝑗∈𝒩(𝑖)

𝑊𝐸𝑒𝑖,𝑗

𝑊𝐶, 𝑊𝑉, and 𝑊𝐸 are weight matrices

𝒩(𝑖): the set of indices of the neighbor nodes of node 𝑖.

Network Architecture of Baseline Model



MIP model-based GCN for Neural Diving & Branching

❑ Loss Function for Neural Diving: the closer the predictions of binary variables to true values, the smaller the loss

𝐿 𝜃 = −෍

𝑖=1

𝑛

෍

𝑗=1

𝑚𝑖

𝜔𝑖𝑗𝑙𝑜𝑔𝑝𝜃(𝑥
𝑖,𝑗|𝔾𝑖)

sum over # 
of graphs 𝑛 sum over #  of feasible solutions 

by solving each graph instance

weights used to reduce 
the sample bias

𝑝𝜃 𝑥 𝒢 =ෑ

𝑑∈𝐷

𝑝𝜃(𝑥𝑑|𝒢)

assume all integer variables 
are independent 

✓ Use the acquired probability distribution 𝑝𝜃 𝑥 𝒢 to stochastically set the value of binary variables to 0 or 1, and 
then solve the remaining sub-MIP with a MIP solver.

❑ Loss Function for Neural Branching: maximize output scores of the binary variables selected by strong branching

𝐿 𝜃 = −log(
exp(𝑦𝑐)

σ𝑖∈𝑉𝐼
exp(𝑦𝑖)

)Cross-entropy function loss

𝑦 is the output vector of the graph neural network

𝑐 is the index of the candidate variable selected by strong branching

𝑉𝐼 is the set of binary variables.



Physics-informed GCN for Neural Diving
❑ Motivation for Using Physics-informed Graph

➢ The baseline model is designed for a generic MIP. UC problems are MIP on a physical network.

➢ When dealing with large-scale UC problems, the bipartite graph built from MIP will be massive and computationally 
prohibitive to implement (see numerical study results).

➢ Physical information and constraints on power network can be used to speed up training and improve performance.

❑ Construction of Physics-informed Graph for UC Problems

➢ Spatial Graph: Captures static information

✓ Generator features (e.g., Pmin, Pmax, ramp rate, heat rates), 

✓ Transmission line features (e.g., impedance, thermal limits).

➢ Spatio-temporal Graph: Embeds variables that change with 
location and time

✓ Electric load

✓ Renewable generation

Physics-informed Graphs for UC Problems



Physics-informed GCN for Neural Diving

Network Architecture of Physics-informed GCN

Variable Mapping Module



Numerical Studies

❑ Optimization horizon: 24-hours

❑ Test Systems: IEEE 1354-bus, 2383-bus, and 6515-bus systems

❑ Historical Load Dataset from CAISO for Neural Diving and Branching

✓Neural Diving: 07/01/2017 – 10/22/2022. Training (1000 days), validation (100 days), testing (100 days) 

✓Neural Branching: 8/16/2021 – 09/03/2021. Training (100 days), validation (20 days), testing (20 days)

❑ State-of-the-art UC problem formulation: state transition model1 with tight formulation2.

❑ MIP Solvers: SCIP and Gurobi (30 minutes of execution time).

[1] Atakan Semih, Guglielmo Lulli, and Suvrajeet Sen, “A state transition MIP formulation for the unit commitment problem.” IEEE Transactions on Power Systems, vol. 
33, no. 1 (2017): 736-748.

[2] B. Knueven, J. Ostrowski, and J.-P. Watson, “On mixed integer programming formulations for the unit commitment problem,” INFORMS Journal on Computing, vol. 
32, no. 4, pp. 857–876, 2020.



Numerical Studies: Neural Diving

❑ PI-GCN converges to a lower loss than MB-GCN

❑ PI-GCN achieves higher validation and testing 
accuracy in terms of binary decision variables 
prediction.

Validation Accuracy for Neural Diving Model: 
1354- and 2383-bus systems

Validation Loss for Neural Diving Model: 
1354- and 2383-bus systems

Interval
1354-bus 2383-bus

MB PI MB PI

≥ 80% 4,582 4,846 7,031 7,598

≥ 90% 4,253 4,533 6,744 7,176

= 100% 3,554 3,692 6,061 6,286

Total 6,240 6,240 7,656 7,656

Number of Binary Variables in Different Accuracy Intervals 
for Testing Dataset



Numerical Studies: Neural Branching & Diving

❑ Neural Branching helps reduce MIP Gap between 0.6% 
to 0.9% for the 1354- and 2383-bus system.

MIP Gap Versus Solving Time for 1354- and 2383-bus system: Branching Only MIP Gap Versus Solving Time 2383-bus system: Branching + Diving

❑ Integrating neural branching with physics-informed neural diving achieves the best result on 2383-bus system.

❑ Within 250 seconds, our proposed method is able to find a very good feasible solution that can not be 
discovered by other methods in 30 minutes.



Numerical Studies: Scalability

❑Our proposed approach reduces the maximum mode and edge inputs by at least 3 orders of magnitude 
and requires substantially less GPU memory.

❑Our proposed approach (Gurobi + PI-GCN) significantly outperforms commercial MIP solver Gurobi by 
consistently maintaining lower operational costs in significantly less time.

Operational cost versus solving time for a sample 
day on IEEE 6516-bus system

System
Max node input Max edge input

Max allocated GPU 
memory (GB)

MB PI MB PI MB PI

1354-bus 137,621 1,354 7,452,282 1,991 7.04 0.36

1888-bus 155,303 1,888 13,030,995 2,531 12.36 0.57

2382-bus 209,535 2,233 42,758,766 2,896 15.92 1.21

3012-bus 216,110 3,012 52,104,887 3,572 19.59 1.52

GPU Memory Requirement of Different Approaches: 
Physics informed (PI) versus MIP Model-based (MB)



Conclusion & Future Work

❑ Developed a physics-informed GCN for neural diving that is trained to find high-quality variable 
assignments for unit commitment problems.

❑ Designed a hierarchical GCN to handle heterogeneous inputs and map inputs of UC problems on a graph 
to outputs at the decision variable level.

❑ Numerical studies show that our proposed physics-informed neural diving and neural branching easily 
beats commercial MIP solver (e.g. SCIP and Gurobi).

❑ The scalability of the proposed model is significantly enhanced by reducing graph size and the 
dependence on computing resources.

❑ Consider uncertainties of load and renewable energy outputs.

❑ Model contingencies and extend to AC power flow.
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