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Motivation

Increasing aggregated DERs & uncertainties in renewables made it difficult for ISOs to
obtain high quality solutions to unit commitment (UC) problems in a timely manner.

UC problems are formulated as mixed-integer programming (MIP). MIP solvers (e.g.
Gurobi, CPLEX) play a key role in obtaining high-quality solutions.

Traditional paradigm: on each day, the day-ahead UC task is treated as a brand new
optimization problem.

Insight: The previous UC problems’ solutions provide useful information that can be
used to improve the solution quality of similar UC problem:s.

Recent advancements in Graph Neural Networks (GNN) make it a good tool to improve
the performance of MIP solvers.
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( Neural Diving: trained to find high-quality d Neural Branching: trained to select the ideal

variable assignments variables for branching

» Input: physics-informed spatio-temporal graph » Input: MIP-based bipartite graph

» Output: decision variable assignments » Output: branching scores of variables on each node

» Label: high-quality feasible solutions » Label: expert branching variables (e.g. strong branching)

[1] Jingtao Qin and Nanpeng Yu, "Solve Large-scale Unit Commitment Problems by Physics-informed Graph Learning, " https://arxiv.org/pdf/2311.15216.pdf.
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Preliminaries: Diving

Q Diving is a set of primal heuristics of exploring the branch-and-bound tree in a depth-first manner.

O Itinvolves sequentially fixing integer variables until either a leaf node is reached or the linear
programming (LP) problem becomes infeasible.

O The diving approach in our work is performed only on the root node.
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 Brief Introduction to Strong Branching

» The measurement for the quality of branching on a variable is the improvement of the dual bound.
» The strong branching (SB) score of branching on variable x; can be calculated as:
SB; = max{Z] — Z,e} x max{Z;" — 2, &}
Z: LP value of the node
27, 2;: LP values of children nodes
g: a small constant (e.g. 107°)

» Pros: Can identify critical variables that have a significant improvement of the dual bound.

» Cons: Computationally expensive
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d  Graph Definition & Features
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Table: Features of different nodes in the bipartite graph

Description

Formulate a Generic MIP as a Bipartite Graph'
Set Feature
obj_cos_sim Cosine similarity with objective
bias Bias value, normalized with constraint coefficients
C is_tight Tightness indicator in LP solution
dual_sol_wval Dual solution value, normalized
age LP age, normalized with the total number of LPs
E coef Constraint coefficient, normalized per constraint
type Type (binary, integer, impl. integer, continuous) as a one-hot encoding.
coef Objective coefficient, normalized
has_1b Lower bound indicator
has_ub Upper bound indicator
sol_is_at_lb Solution value equals lower bound
sol_is_at_ub Solution value equals upper bound
Vv sol_frac Solution value fractionality
basis_status Simplex basis status (lower, basic, upper, zero) as a one-hot encoding
reduced _cost Reduced cost, normalized
age LP age, normalized
sol_val Solution value
inc_val Value in incumbent
avg_inc_val Average value in incumbents

L The bipartite graph is defined as: G = (C, E, V)
v' C:the set of constraint nodes. E: the set of edges. V: the set of variable nodes

[1] Deep Mind, Google Research ”Solving mixed integer programs using neural networks.” arXiv preprint arXiv:2012.13349 (2020).
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Network Architecture of Baseline Model

O Two graph convolution layers have the same network

mpue | Lnitial ViaC structure but are initialized with different weights.
m) | Embedding ) | convolution
layer fayer O For V to C convolution layer, nodal information are

propagated using the operator below:

xl' = chi+ z WVX]+ z WEei,j

m - ot JEN (D) JEN (D)
. | 4mm| Embedding |4 | convolution |
o layer laryer We, Wy, and Wy are weight matrices
WEE::EEI' di‘;ﬂ;]m N (i): the set of indices of the neighbor nodes of node i.

Branching scores
(Meural branching)




MIP model-based GCN for Neural Diving & Branching

O Loss Function for Neural Diving: the closer the predictions of binary variables to true values, the smaller the loss

n m;

L(©O) == ) ) wilogps(x+]Gy)

sum over # 4/‘7=1 \ \ po(x]G) = | ] Po(x4lG)

of graphs n - - weights used to reduce
grap sum over # of feasible solutions & . assume all integer variables
the sample bias

by solving each graph instance are independent

$IEEE

v’ Use the acquired probability distribution pg(x|G) to stochastically set the value of binary variables to 0 or 1, and
then solve the remaining sub-MIP with a MIP solver.

O Loss Function for Neural Branching: maximize output scores of the binary variables selected by strong branching

exp(¥c) )
iev; €XP(Vi)

Cross-entropy function loss  L(0) = —lOg(Z

y is the output vector of the graph neural network

c is the index of the candidate variable selected by strong branching

I} is the set of binary variables.
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d  Motivation for Using Physics-informed Graph

» The baseline model is designed for a generic MIP. UC problems are MIP on a physical network.

» When dealing with large-scale UC problems, the bipartite graph built from MIP will be massive and computationally
prohibitive to implement (see numerical study results).

» Physical information and constraints on power network can be used to speed up training and improve performance.

Physics-informed Graphs for UC Problems

» Spatial Graph: Captures static information

v'  Generator features (e.g., Pmin, Pmax, ramp rate, heat rates),

v" Transmission line features (e.g., impedance, thermal limits).

» Spatio-temporal Graph: Embeds variables that change with
location and time

v"  Electric load

v"  Renewable generation




Physics-informed GCN for Neural Diving
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Numerical Studies

J Optimization horizon: 24-hours
J Test Systems: IEEE 1354-bus, 2383-bus, and 6515-bus systems

J Historical Load Dataset from CAISO for Neural Diving and Branching
v'Neural Diving: 07/01/2017 — 10/22/2022. Training (1000 days), validation (100 days), testing (100 days)

v'Neural Branching: 8/16/2021 — 09/03/2021. Training (100 days), validation (20 days), testing (20 days)
] State-of-the-art UC problem formulation: state transition model! with tight formulation?.

d MIP Solvers: SCIP and Gurobi (30 minutes of execution time).

[1] Atakan Semih, Guglielmo Lulli, and Suvrajeet Sen, “A state transition MIP formulation for the unit commitment problem.” IEEE Transactions on Power Systems, vol.
33, no. 1(2017): 736-748.

[2] B. Knueven, J. Ostrowski, and J.-P. Watson, “On mixed integer programming formulations for the unit commitment problem,” INFORMS Journal on Computing, vol.
32, no. 4, pp. 857-876, 2020.



Numerical Studies: Neural Diving

Validation Loss for Neural Diving Model:
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Validation Accuracy for Neural Diving Model:

1354- and 2383-bus systems
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Number of Binary Variables in Different Accuracy Intervals
for Testing Dataset

MB Pl MB P

> 80% 4,582 4,846 7,031 7,598
> 90% 4,253 4,533 6,744 7,176
= 100% 3,554 3,692 6,061 6,286

Total 6,240 6,240 7,656 7,656

L PI-GCN converges to a lower loss than MB-GCN

L PI-GCN achieves higher validation and testing
accuracy in terms of binary decision variables
prediction.
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Numerical Studies: Neural Branching & Diving

MIP Gap Versus Solving Time for 1354- and 2383-bus system: Branching Only MIP Gap Versus Solving Time 2383-bus system: Branching + Diving
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Integrating neural branching with physics-informed neural diving achieves the best result on 2383-bus system.

O Within 250 seconds, our proposed method is able to find a very good feasible solution that can not be
discovered by other methods in 30 minutes.



Numerical Studies: Scalability

1354-bus
1888-bus
2382-bus

3012-bus

GPU Memory Requirement of Different Approaches:
Physics informed (Pl) versus MIP Model-based (MB)

i - M ! P

Max node input Max edge input ax allocated GPU

System memory (GB)
MB Pl MB P| MB P

137,621
155,303
209,535

216,110

1,354
1,888
2,233

3,012

7,452,282
13,030,995
42,758,766

52,104,887

1,991

2,531

2,896

3,572

7.04

12.36

15.92

19.59

0.36

0.57

1.21

1.52
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Operational cost versus solving time for a sample
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1 Our proposed approach reduces the maximum mode and edge inputs by at least 3 orders of magnitude
and requires substantially less GPU memory.

1 Our proposed approach (Gurobi + PI-GCN) significantly outperforms commercial MIP solver Gurobi by
consistently maintaining lower operational costs in significantly less time.
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d Developed a physics-informed GCN for neural diving that is trained to find high-quality variable
assignments for unit commitment problems.

1  Designed a hierarchical GCN to handle heterogeneous inputs and map inputs of UC problems on a graph
to outputs at the decision variable level.

d  Numerical studies show that our proposed physics-informed neural diving and neural branching easily
beats commercial MIP solver (e.g. SCIP and Gurobi).

O The scalability of the proposed model is significantly enhanced by reducing graph size and the
dependence on computing resources.

O Consider uncertainties of load and renewable energy outputs.

O Model contingencies and extend to AC power flow.
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