

Dr. Nanpeng Yu Full Professor and Vice Chair Department of Electrical & Computer engineering Director of Energy, Economics, and Environment Research Center Email: nyu@ece.ucr.edu

Outline

- ❑ Motivation and Overall Framework
- ❑ Preliminaries
- ❑ MIP model-based GCN for Neural Diving and Branching
- ❑ Physics-informed GCN for Neural Diving
- ❑ Numerical Studies
- ❑ Conclusion and Future Work

Motivation

- ❑ Increasing aggregated DERs & uncertainties in renewables made it difficult for ISOs to obtain high quality solutions to unit commitment (UC) problems in a timely manner.
- ❑ UC problems are formulated as mixed-integer programming (MIP). MIP solvers (e.g. Gurobi, CPLEX) play a key role in obtaining high-quality solutions.
- ❑ Traditional paradigm: on each day, the day-ahead UC task is treated as a brand new optimization problem.
- ❑ Insight: The previous UC problems' solutions provide useful information that can be used to improve the solution quality of similar UC problems.
- Recent advancements in Graph Neural Networks (GNN) make it a good tool to improve the performance of MIP solvers.

Overall Framework¹

□ Neural Diving: trained to find high-quality variable assignments

- Input: physics-informed spatio-temporal graph
- \triangleright Output: decision variable assignments
- \triangleright Label: high-quality feasible solutions
- ❑Neural Branching: trained to select the ideal variables for branching
	- ➢ Input: MIP-based bipartite graph
	- \triangleright Output: branching scores of variables on each node
	- \triangleright Label: expert branching variables (e.g. strong branching)

[1] Jingtao Qin and Nanpeng Yu, "Solve Large-scale Unit Commitment Problems by Physics-informed Graph Learning, "[https://arxiv.org/pdf/2311.15216.pdf.](https://arxiv.org/pdf/2311.15216.pdf)

Preliminaries: Diving

- \Box Diving is a set of primal heuristics of exploring the branch-and-bound tree in a depth-first manner.
- \Box It involves sequentially fixing integer variables until either a leaf node is reached or the linear programming (LP) problem becomes infeasible.
- \Box The diving approach in our work is performed only on the root node.

Preliminaries: Strong Branching

- ❑ Brief Introduction to Strong Branching
	- \triangleright The measurement for the quality of branching on a variable is the improvement of the dual bound.
	- \triangleright The strong branching (SB) score of branching on variable x_i can be calculated as:

 $SB_i = max\{\hat{z}_i^- - \hat{z}, \varepsilon\} \times max\{\hat{z}_i^+ - \hat{z}, \varepsilon\}$

 \hat{z} : LP value of the node

 $\hat{z_i}$ \vec{i} , \hat{z}_i $i_i⁺$: LP values of children nodes

 ε : a small constant (e.g. 10^{-6})

 \triangleright Pros: Can identify critical variables that have a significant improvement of the dual bound.

 \triangleright Cons: Computationally expensive

MIP model-based GCN for Neural Diving & Branching

❑ Graph Definition & Features

 $\operatorname{\mathbf{Set}}$ Feature Description Cosine similarity with objective obj_cos_sim bias Bias value, normalized with constraint coefficients $\mathbf C$ Tightness indicator in LP solution $e_{1,1}$ is_tight dual sol val Dual solution value, normalized LP age, normalized with the total number of LPs age $\mathbf{e}_{1,n}$ Constraint coefficient, normalized per constraint \overline{E} coef $min_{x} c_1\overline{x_1}$ $c_n\overline{x_n}$ Type (binary, integer, impl. integer, continuous) as a one-hot encoding. type $e_{2,1}$ $[a_{11}x_1] + \cdots + a_{1n}x_n] \leq b_1$ Objective coefficient, normalized coef Lower bound indicator has_lb $a_{21}x_1 + \cdots + a_{2n}x_n \leq b_2$ has_ub Upper bound indicator Solution value equals lower bound sol_is_at_lb $e_{m,1}$ sol_is_at_ub Solution value equals upper bound $e_{m,n}$ \mathbf{V} sol_frac Solution value fractionality $a_{m1}x_1 + \cdots + a_{mn}x_n \leq b_m$ basis_status Simplex basis status (lower, basic, upper, zero) as a one-hot encoding Reduced cost, normalized reduced_cost LP age, normalized age Solution value sol_val Value in incumbent inc_val Average value in incumbents avg_inc_val

 \Box The bipartite graph is defined as: $\mathcal{G} = (\mathcal{C}, \mathcal{E}, V)$

 \checkmark C: the set of constraint nodes. E: the set of edges. V: the set of variable nodes

[1] Deep Mind, Google Research "Solving mixed integer programs using neural networks." arXiv preprint arXiv:2012.13349 (2020).

Formulate a Generic MIP as a Bipartite Graph¹ Table: Features of different nodes in the bipartite graph

MIP model-based GCN for Neural Diving & Branching

Network Architecture of Baseline Model

(Neural branching)

- \Box Two graph convolution layers have the same network structure but are initialized with different weights.
- ❑ For V to C convolution layer, nodal information are propagated using the operator below:

$$
x'_{i} = W_{C}x_{i} + \sum_{j \in \mathcal{N}(i)} W_{V}x_{j} + \sum_{j \in \mathcal{N}(i)} W_{E}e_{i,j}
$$

 W_C , W_V , and W_E are weight matrices

 $N(i)$: the set of indices of the neighbor nodes of node i.

MIP model-based GCN for Neural Diving & Branching

❑ **Loss Function for Neural Diving**: the closer the predictions of binary variables to true values, the smaller the loss

@ IEEE

 \checkmark Use the acquired probability distribution $p_\theta(x|\mathcal{G})$ to stochastically set the value of binary variables to 0 or 1, and then solve the remaining sub-MIP with a MIP solver.

❑ **Loss Function for Neural Branching**: maximize output scores of the binary variables selected by strong branching

Cross-entropy function loss
$$
L(\theta) = -\log(\frac{\exp(y_c)}{\sum_{i \in V_I} \exp(y_i)})
$$

 γ is the output vector of the graph neural network

 \bar{c} is the index of the candidate variable selected by strong branching

 V_I is the set of binary variables.

Physics-informed GCN for Neural Diving

- ❑ Motivation for Using Physics-informed Graph
	- \triangleright The baseline model is designed for a generic MIP. UC problems are MIP on a physical network.
	- ➢ When dealing with large-scale UC problems, the bipartite graph built from MIP will be massive and computationally prohibitive to implement (see numerical study results).
	- ➢ Physical information and constraints on power network can be used to speed up training and improve performance.

Physics-informed Graphs for UC Problems

- ❑ Construction of Physics-informed Graph for UC Problems
- \triangleright Spatial Graph: Captures static information
	- \checkmark Generator features (e.g., Pmin, Pmax, ramp rate, heat rates),
	- \checkmark Transmission line features (e.g., impedance, thermal limits).
- \triangleright Spatio-temporal Graph: Embeds variables that change with location and time
	- Electric load
	- \checkmark Renewable generation

Physics-informed GCN for Neural Diving

Numerical Studies

- ❑ Optimization horizon: 24-hours
- ❑ Test Systems: IEEE 1354-bus, 2383-bus, and 6515-bus systems
- ❑ Historical Load Dataset from CAISO for Neural Diving and Branching
	- \checkmark Neural Diving: 07/01/2017 10/22/2022. Training (1000 days), validation (100 days), testing (100 days)

IFFF

- \checkmark Neural Branching: 8/16/2021 09/03/2021. Training (100 days), validation (20 days), testing (20 days)
- \Box State-of-the-art UC problem formulation: state transition model¹ with tight formulation².
- ❑ MIP Solvers: SCIP and Gurobi (30 minutes of execution time).
- [1] Atakan Semih, Guglielmo Lulli, and Suvrajeet Sen, "A state transition MIP formulation for the unit commitment problem." *IEEE Transactions on Power Systems*, vol. 33, no. 1 (2017): 736-748.
- [2] B. Knueven, J. Ostrowski, and J.-P. Watson, "On mixed integer programming formulations for the unit commitment problem," *INFORMS Journal on Computing*, vol. 32, no. 4, pp. 857–876, 2020.

Numerical Studies: Neural Diving

Validation Loss for Neural Diving Model: 1354- and 2383-bus systems

Validation Accuracy for Neural Diving Model: 1354- and 2383-bus systems

Number of Binary Variables in Different Accuracy Intervals for Testing Dataset

❑ PI-GCN converges to a lower loss than MB-GCN

 \Box PI-GCN achieves higher validation and testing accuracy in terms of binary decision variables prediction.

Numerical Studies: Neural Branching & Diving

- ❑ Integrating neural branching with physics-informed neural diving achieves the best result on 2383-bus system.
- ❑ Within 250 seconds, our proposed method is able to find a very good feasible solution that can not be discovered by other methods in 30 minutes.

Numerical Studies: Scalability

GPU Memory Requirement of Different Approaches: Physics informed (PI) versus MIP Model-based (MB)

Operational cost versus solving time for a sample day on IEEE 6516-bus system

OIEEE

- ❑ Our proposed approach reduces the maximum mode and edge inputs by at least 3 orders of magnitude and requires substantially less GPU memory.
- ❑ Our proposed approach (Gurobi + PI-GCN) significantly outperforms commercial MIP solver Gurobi by consistently maintaining lower operational costs in significantly less time.

Conclusion & Future Work

- \Box Developed a physics-informed GCN for neural diving that is trained to find high-quality variable assignments for unit commitment problems.
- \Box Designed a hierarchical GCN to handle heterogeneous inputs and map inputs of UC problems on a graph to outputs at the decision variable level.
- \Box Numerical studies show that our proposed physics-informed neural diving and neural branching easily beats commercial MIP solver (e.g. SCIP and Gurobi).
- \Box The scalability of the proposed model is significantly enhanced by reducing graph size and the dependence on computing resources.
- \Box Consider uncertainties of load and renewable energy outputs.
- Model contingencies and extend to AC power flow.

Contact Information

Nanpeng Yu. Email: nyu@ece.ucr.edu

Thank You

Questions?

PhD Student: Jingtao Qin

Funding Support for the Project: DOE, NSF, CEC, UCOP.