

Realistic but not Real: A Framework to Generate Synthetic Timeseries Data for Grid Studies David Larson, EPRI

24PESGM1065

Why synthetic timeseries data?

- Need timeseries data for many power system studies
- But data may not be readily available
- Many studies only need data that is representative of conditions of interest
- Idea: synthesize data that is statistically realistic, but not real

Key steps in generating synthetic timeseries data:

Case Study

Synthetic Forecasts

Problem setup

- Given:
 - Real forecasts for Site A
 - Real observations for Site A
 - Real observations for Site B
- Goal: generate synthetic forecasts for Site B
 - where the synthetic forecasts for Site B have similar forecast errors as Site A

IFFF

Error = Forecast - Observation

Evaluated two locations

	Desert Rock, NV	Henderson, NV
Latitude [°N]	36.62	36.04
Longitude [°E]	-116.02	-114.92
Elevation [m]	1,007	538
Variable	GHI [W/m²]	GHI [W/m²]
Observations	NOAA SURFRAD	DOE RTC
Forecasts	NOAA GFS	NOAA GFS
Time resolution	Hour-ending averages	Hour-ending averages
Time range	May 2019–August 2020	April 2019–June 2020

Similar (real) forecast error distributions

Similar (real) forecast error distributions

(a) Desert Rock, NV

(b) Henderson, NV

Comparing statistics (real vs synthetic)

Forecast data source	RMSE [W/m ²]	MBE [W/m ²]
Persistence forecast	165.6	-1.1
Parametric distribution	147.5	-49.0
Parametric distribution (hour of day)	158.1	-63.7
Non-parametric distribution	132.7	-50.5
Non-parametric distribution (hour of day)	149.5	-59.5
Real forecast	169.8	-76.1

Train on Henderson, test on Desert Rock

Error [W/m²]

Error [W/m²]

Synthetic forecast

IEEE

PES

Power & Energy Society*

Train on Desert Rock, test on Henderson

Key takeaways

- Generating synthetic timeseries is a practical solution for cases where real data is not available, but data needs only to be statistically realistic
- **Distribution-based methods** can generate synthetic forecast data which has statistically realistic forecast errors
- Validating synthetic data should consider both statistical analysis and domain expertise

EPRI report 3002024648

https://www.epri.com/research/products/00000003002024648

000000

Questions?

DLarson@epri.com