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Introduction

Today we celebrate Johann
Sebastian Bach with our first
ever Al-powered Doodle!
The Doodle is an interactive
experience encouraging
players to compose a two
measure melody of their
choice. With the press of a
button, the Doodle then uses
machine learning to
harmonize the custom melody
into Bach’s signature music
style...

Next came our partners at
PAIR who used TensorFlow.js
to allow machine learning to
happen entirely within the
web browser...

3/22/2019

el

Celebrating Johann Sebastian Bach

1

Harmonizing...

[306 Bach compositions were analyzed to teach ]
this machine how o recognize patterns &
create harmonies from your notes

Took 35.42 sec to harmonize my melody

https://www.google.com/doodles/celebrating-johann-sebastian-bach

Want to make music together? Add notes to the
lines below and our machine will use Artificial
Intelligence (AI) to harmonize your melodies in
my signature style.

Thanks for harmonizing with me! Feel free to

& share your masterpiece with the world. Also,
help us improve the results of our machine.
What did you think?




@};Es < IEEE
Contents \ po‘

1. Distribution Linear State Estimator: Machine Learning for
Topology Detection

2. Linear State Estimator: Machine Learning for Parameters of
Kalman Filter




1. Machine Learning for
Topology Detection in D-PMU
ROSE (Distribution-PMU ROSE)
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Distribution Linear State Estimator (DLSIM ]

[PMU Stream} [PMU Mapping] [Model Info ] [ Configuration List]

« Three-phase DLSE is based on synchronized phasor | | T ' |

measurements of voltage and current phasors, provides Initialization

a direct, linear solution of system state using tme- ... 77
I N

synchronized synchrophasor data only Bad Data

Detected?
» Performs state estimation 60 times per second

Y
- DLSE process in D-PMU ROSE platform consists of: femove from stream
« Bad data detection, correction, alarming and

New
Configuration
/ Event
Detected?

|
Observability Analysis/
/ Reconfiguration

reporting Y | /1 :
. . . . . ) Filtering/Smoothing
« Combination of filtering and smoothing techniques !
° Observablllty analySiS Linear State Estimation (WLS Method)

« Three-phase Distribution Linear State Estimation

naccurate

N
- Detection of switching events (only based on ' et
PMU data) ,
« Real-time system monitoring (voltage and thermal) Report/Alarm
« Alarming, visualization, archiving i R pa— 1 i

[Report/Archive] [ PMU State } [ Alarming } [Visualization]

Estimator Case
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Topology (Switching Event) Detection fop

» Purpose of the event detection
« Correctly identify switching events (e.g., topology change detection) and microgrid
configuration without supplying switch status to the D-LSE platform
« D-LSE utilizes event detection logic which is based on computing currents using PMU
measurements within the circuit

« Machine learning enables more effective/accurate event detection in real-time environment
* One of the main tasks solved by machine learning algorithms is classification of various
situations.

« V&R Energy’s machine learning algorithm is used as a part of the platform to identify
switching events and classify network configurations based on PMU measurements of
voltage and current only:

» Switch/recloser statuses are not provided as a part of PMU data or as additional data
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Machine Learning Libraries in D-PMU R@SK (epes

Tested Microsoft’s LightGBM, Google’s TensorFlow, and V&R Energy’s Simple
* Microsoft’s LightGBM:

« A gradient boosting method (a machine learning
technique for regression and classification
problems) that uses tree-based learning algorithms:

 Faster training speed, higher efficiency ‘
. Lower memory usage v

« Better accuracy

« Capable of handling large-scale data
« Google’s TensorFlow:

« A symbolic math library, and is also used for machine
learning applications such as neural networks, which
was developed by Google Brain

« Uses data flow graphs; graph nodes represent

mathematical operations, while the graph edges represent the multidimensional data arrays
(tensors) that flow between them

« All three libraries provided similar results
« Simple was selected as it gave robust solution with very limited available training data set

Model\lightgbm.bxt
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Using Machine Learning with Limited AvMe@Es
Data Sets

« Usually, machine learning approaches require large volume of samples to train the system - tens to
hundreds of thousands (or more) of samples

« However, this volume of training data is not available in the industry
« Therefore, we used the approach that allowed us to implement a limited number of training data sets
« Extensive testing in RTDS lab showed a very high accuracy of the used technique:

» During initial performance testing, 40 network configurations had to be identify and classified basec
on 10 PMU data sets. All configurations were correctly classified

« Then, the number of tested configurations was almost doubled, and all of them were also correctly
identified




Topology Detection

* Machine learning is used
to improve accuracy of
event detection in real-
time

» Created 75+ different
topology cases

« Used RTDS data for
development and testing
of over 50 different
topologies/configurations

« The topology detection
accuracy is over 90 %
through varying load and
system conditions
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The process of changing configuration started -

Preparing new session...

Tew session 1s starting...

ZERO: SW235, SWBAT, VISTAE, SWGas, VISTAS, VISTAB, PMU2_N, SWPV
BAD: NO

New event at time (2020.12.07 22:15:17.133):

Configurations:

1. Base Case

ZERO: PCL9, SW235, SWBAT, PCL11, VISTAF, VISTAH, PCL17, VISTAE,
BAD: NO

New event at time (2020.12.07 22:15:27.800):

Configurations:

1.5. Open 187.1-401

ZERO: PCL9, SW235, SWBAT, PCL11, VISTAF, VISTAH, PCL17, VISTAE,
BAD: NO

New event at time (2020.12.87 22:15:37.600):

Configurations:

1.9. Open 187.1-401 & 343.1-344 (1.5+1.7)

ZERO: SW235, SWBAT, VISTAE, SWGas, PCLS5, SW376_1, VISTAS, VISTAT
BAD: NO

New event at time (2020.12.07 22:15:47.567):

Configurations:

1.7. Open 343.1-344

ZERO: SW235, SWBAT, VISTAE, SWGas, VISTAS, VISTAB, PMU2_N, SWPV
BAD: NO

New event at time (2020.12.07 22:15:57.767):

Configurations:

1. Base Case

PMU stream has ended. (2021.63.17 13:19:00.975)
Csv Pmu Reader stopped
The process of changing configuration stopped

275




Testing Environment \ (s

« ComkEd performed extensive benchmarking in ComEd’s Grid Integration and Technology (GriT)
Lab using real-time digital simulation (RTDS)

« Configurations were created in RTDS

« D-PMU ROSE tool (DLSE) didn’t know which configuration was sent, and based on PMU
measurements identified the configuration

« ComkEd, then, validated that the configuration identified by the tool was the same as created in
RTDS

* The capability was tested and validated for BCM during an extensive period of time under various
conditions
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e Topology
detection is
done using only
PMU
(three-phase
voltages and
currents)

e Switch/recloser
status is not

provided as a part
of PMU stream or as additional data

Power & Energy Society®
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Video by Heng (Kevin) Chen, formerly
with Smart Grid & Technology, ComEd

Initially presented at 2020 IEEE PES ISGT NA
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Conclusions

« Estimated value follow
raw data during both
steady state and
transient conditions

« DLSE identifies defined
topology changes
correctly

x

Chart X

Voltage Current
184.1 (Magnitude) [ 220 (Magnitude) | 378 (Magnitude)

PMU Value A PMU Value B PMU Value C Processed A
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T
LSE

New event at time (2019.06.14 ©4:59:34.567) :
New event at time (2019.06.14

New event at time (2019.06.14

New event at -

New event at 2019.06. :06:27.

New event at time (2019.06.14 05:08:22.83:

Project Manager




2. Machine Learning for
Parameters of Kalman Filter
in PMU-ROSE
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PMU ROSE Real-Time Analysis \ (mes

* Output of LSE: LSE
« Conditioned PMU data :

« Bad data reporting and : ' —
e PMU/Mapping Bad Data Observability/ _
statistics Reporting Reporting Island Reporting Power Flow Case Creation

 Alist of observable
I i i Event Detection Contingency Voltage Stability
islands and their details l Reporting \ Analysis Analysis

« PMU State Estimator

Case -
l Output/Archiving/Alraming \

Visualization ]




Components of LSE Framework lren | A EEE
« Multi-step process:

1. Several pre-screening .
. Data Range
techniques
2. Data range checks

3. Combination of filtering L
and smoothing ey

techniques based on
4. Linear state estimation
5. End-to-end machine
learning
Detected?

Yes




Kalman Filtering Algorithm [GFts | QIEEE

* An algorithm that:

« Uses a series of measurements observed over time, containing statistical noise and other
inaccuracies, and

* Produces estimates of unknown variables that tend to be more accurate than those based on
a single measurement alone

« The Kalman filter approach is a two-stage algorithm:

» The first stage is prediction, which projects the previous time step state forward in time by
means of a predefined process model

* The second stage is correction/estimation, which corrects the predicted state by accounting
the available measurements and the accuracies of both process model and measurements

 LSE is used at the second stage

* PMU-ROSE creates the Kalman filter for each observable island
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Prediction and Estimation using Kalmar\ (epes
Filtering

« The prediction equations obtain the a priori state estimate x3 of the state x;, at time step k given the
knowledge of the process prior to time step k, up to and including time step k - 1

 The estimation equations incorporate the new measurements obtained at time-step k into the a
priori estimate and are used to derive an improved a posteriori estimate x; of the true state x;,

« Used quadratic prediction based Kalman filter:
« Uses quadratic relationship between the past, present and future/estimated state
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Prediction and Estimation using Kalmar\ (epes
Filtering (cont.)

Prior knowledge P k—1|k—1 Prediction step
- St 1: - —> Basedone.g.
age 1. of state X
icti k—1lk—1 hysical model
Prediction ‘ f physical mode
 Stage 2: . \
Correction (Update) Next timestep - klk—1
k+ k—+1 Xk|k—1
P k|k Update step Measurements

S <«— Compare prediction —<e—
Xk|k parep Vi | -
* to measurements
Output estimate
‘ of state

Xk |k = a posteriori state estimate at time k given observations up to and including at time k
Py |k = a posteriori error covariance matrix (measure of estimated accuracy of the state estimate)

Figure source: https://en.wikipedia.org/wiki/Kalman_filter




Kalman Filtering \ (epes

* Alinear system can be modeled as a pair of linear stochastic process and
measurement equations
Xk = Axk_l + Wi
Z = ka + Uk

where
X €ER" = the system state vector;
z € R™ = the measurement vector;
A = nxn is the state transition matrix that links the system state at the
previous time step k—1 to the state at the current time step k;
H = mxn matrix that relates the system state and the measurement set z;
wi, € R™ = the process noise at time step k; assumed to be white;

v, €E R™ = measurement noise; assumed to be white.
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Kalman Filtering (cont.) \ (eps

wer & Energy

 The process noise and measurement noise are assumed to be mutually
independent random variables with normal probability distributions

p(W)~ N(O, Qk)
p(v)~ N(O, Rk)

where

Qk = the process noise covariance matrix
Ry = the measurement noise covariance matrix




Prediction Using Kalman Filtering \ (epes

Power & Energy Society®
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- Stage 1: Prediction m—)

 Stage 2: Correction/LSE me——)

« Applies both heuristic
and statistical methods to
identify suspected bad data
points and topology changes -
« Considers relationship -
between signals |
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Correction Using Kalman Filtering and L\E\

Caption Voltage Magnitude B___1VP

» Displays PMU values and —mmme e e
ValueS Computed by LSE, onditione B 217, 150, 148~
Compares PMU and LSE Values —— 1V || acnituce v 5 :j:c”mzn

Il 255, 253, 145~

with State Estimator values

Add € Restore

 Red graph — real-time PMU
measurements;
Pink graph — the same PMU
measurements processed by
the LSE (conditioned values);
Orange line — State Estimator
value.
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Parameter Learning for Kalman Filter \ (epes

« During learning we want to learn the best parameters to maximize the likelihood of the input
values
* A number of parameters affect filtering:
« Transition (process) variance
* Observation (measurement) variance
« Constraint variance
» At each step, we calculate the likelihood of the new input values and the derivatives of this
likelihood by all parameters included in learning
 Make a small gradient step towards likelihood maximization
» After several hundred steps, the parameters are adopted to the data
* Online learning is done continuously
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Parameters Included in Learning \ (emes

« Transition Variance
« Components of the process noise covariance matrix Q,
« Difference between new and previous values (voltages at the next timestamp)

 The smaller the Transition Variance is, the closer the new values are to the previous ones, and
the smoother output signals are

 Measurement Variance:
« Components of the measurement noise covariance matrix Ry,

« Difference between the measured input values and the predicted ones using the Kalman filter
« Similar to measurement error
« The smaller the Measurement Variance is, the closer the output signals are to the input signals

 Constraint Variance:
 Based on Kirchhoff’s law
* The smaller the Constraint Variance is, the more accurately Kirchhoff’'s equations are satisfied



Learning is Disabled — 1
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Red graph— PMU measurements

Pink graph — LSE values: learning disabled

Orange line — State Estimator value
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Pink graph — LSE values: learning disabled

Orange line — State Estimator value




Learning is Enabled, Rate = 0.001 (e#es | GIEEE
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Red graph— PMU measurements
Pink graph — LSE values: learning disabled
Orange line — State Estimator value




Learning is Enabled, Rate = 0.001 (cont.) (epes | GIEEE

Interval 90s
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Red graph— PMU measurements
Pink graph — LSE values: learning disabled
Orange line — State Estimator value




Learning is Enabled, Rate = 0.001 (cont.) (e
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Pink graph — LSE values: learning disabled
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Learning is Enabled, Rate = 0.001 (cont.) (s | IEEE
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Learning is Enabled, Rate = 0.01 (epes | G IEEE
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Red graph— PMU measurements
Pink graph — LSE values: learning disabled
Orange line — State Estimator value




Learning is Enabled, Rate = 0.01 (cont.) (s
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Learning is Enabled, Rate = 0. 1
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Red graph— PMU measurements
Pink graph — LSE values: learning disabled
Orange line — State Estimator value
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Learning is Enabled, Rate = 0. 1 (cont.) (s
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Conclusions \ (mes

« PMU-ROSE creates the Kalman filter for each observable island

« Use of machine learning improves the accuracy of linear state estimation

* Online learning is done continuously
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