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Today we celebrate Johann 
Sebastian Bach with our first 
ever AI-powered Doodle! 
The Doodle is an interactive 
experience encouraging 
players to compose a two 
measure melody of their 
choice. With the press of a 
button, the Doodle then uses 
machine learning to 
harmonize the custom melody 
into Bach’s signature music 
style…
Next came our partners at 
PAIR who used TensorFlow.js 
to allow machine learning to 
happen entirely within the 
web browser… 

3/22/2019

https://www.google.com/doodles/celebrating-johann-sebastian-bach

Took 35.42 sec to harmonize my melody
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1. Machine Learning for 
Topology Detection in D-PMU 

ROSE (Distribution-PMU ROSE)



Distribution Linear State Estimator (DLSE)
• Three-phase DLSE is based on synchronized phasor 

measurements of voltage and current phasors, provides 
a direct, linear solution of system state using time-
synchronized synchrophasor data only

• Performs state estimation 60 times per second
• DLSE process in D-PMU ROSE platform consists of:

• Bad data detection, correction, alarming and 
reporting

• Combination of filtering and smoothing techniques 
• Observability analysis
• Three-phase Distribution Linear State Estimation 
• Detection of switching events (only based on 

PMU data)
• Real-time system monitoring (voltage and thermal)
• Alarming, visualization, archiving



Topology (Switching Event) Detection
• Purpose of the event detection

• Correctly identify switching events (e.g., topology change detection) and microgrid 
configuration without supplying switch status to the D-LSE platform

• D-LSE utilizes event detection logic which is based on computing currents using PMU 
measurements within the circuit

• Machine learning enables more effective/accurate event detection in real-time environment
• One of the main tasks solved by machine learning algorithms is classification of various 

situations. 
• V&R Energy’s machine learning algorithm is used as a part of the platform to identify 

switching events and classify network configurations based on PMU measurements of 
voltage and current only:

• Switch/recloser statuses are not provided as a part of PMU data or as additional data



Machine Learning Libraries in D-PMU ROSE
• Tested Microsoft’s LightGBM, Google’s TensorFlow, and V&R Energy’s Simple
• Microsoft’s LightGBM:

• A gradient boosting method (a machine learning 
technique for regression and classification 
problems) that uses tree-based learning algorithms:

• Faster training speed, higher efficiency
• Lower memory usage
• Better accuracy
• Capable of handling large-scale data

• Google’s TensorFlow:
• A  symbolic math library, and is also used for machine 

learning applications such as neural networks, which 
was developed by Google Brain 

• Uses data flow graphs; graph nodes represent 
mathematical operations, while the graph edges represent the multidimensional data arrays 
(tensors) that flow between them

• All three libraries provided similar results
• Simple was selected as it gave robust solution with very limited available training data set



Using Machine Learning with Limited Available 
Data Sets

• Usually, machine learning approaches require large volume of samples to train the system  -  tens to 
hundreds of thousands (or more) of samples

• However,  this volume of training data is not available in the industry
• Therefore, we used the approach that allowed us to implement a limited number of training data sets
• Extensive testing in RTDS lab showed a very high accuracy of the used technique:

• During initial performance testing, 40 network configurations had to be identify and classified based 
on 10 PMU data sets. All configurations were correctly classified

• Then, the number of tested configurations was almost doubled, and all of them were also correctly 
identified



Topology Detection
• Machine learning is used 

to improve accuracy of 
event detection in real-
time

• Created 75+ different 
topology cases

• Used RTDS data for 
development and testing 
of over 50 different 
topologies/configurations

• The topology detection 
accuracy is over 90 % 
through varying load and 
system conditions



Testing Environment

• ComEd performed extensive benchmarking in ComEd’s Grid Integration and Technology (GriT) 
Lab using real-time digital simulation (RTDS)

• Configurations were created in RTDS
• D-PMU ROSE tool (DLSE) didn’t know which configuration was sent, and based on PMU 

measurements identified the configuration
• ComEd, then, validated that the configuration identified by the tool was the same as created in 

RTDS
• The capability was tested and validated for BCM during an extensive period of time under various 

conditions



Topology Detection
• Topology

detection is
done using only
PMU 
(three-phase
voltages and
currents)

• Switch/recloser
status is not 
provided as a part 
of PMU stream or as additional data

 

• Observability changes 
after a switching event has 
occurred
 



Video by Heng (Kevin) Chen, formerly 
with Smart Grid & Technology, ComEd 

Initially presented at 2020 IEEE PES ISGT NA
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Conclusions
• Estimated value follow 

raw data during both 
steady state and 
transient conditions

• DLSE identifies defined 
topology changes 
correctly



2. Machine Learning for 
Parameters of Kalman Filter 

in PMU-ROSE



PMU ROSE Real-Time Analysis
• Output of LSE:

• Conditioned PMU data
• Bad data reporting and 

statistics
• A list of observable 

islands and their details
• PMU State Estimator 

Case



Components of LSE Framework
• Multi-step process:

1. Several pre-screening 
techniques 

2. Data range checks
3. Combination of filtering 

and smoothing 
techniques based on 
Kalman filter

4. Linear state estimation
5. End-to-end machine 

learning



Kalman Filtering Algorithm
• An algorithm that:

• Uses a series of measurements observed over time, containing statistical noise and other 
inaccuracies, and 

• Produces estimates of unknown variables that tend to be more accurate than those based on 
a single measurement alone

• The Kalman filter approach is a two-stage algorithm:
• The first stage is prediction, which projects the previous time step state forward in time by 

means of a predefined process model
• The second stage is correction/estimation, which corrects the predicted state by accounting 

the available measurements and the accuracies of both process model and measurements
• LSE is used at the second stage

• PMU-ROSE creates the Kalman filter for each observable island



Prediction and Estimation using Kalman 
Filtering
• The prediction equations obtain the a priori state estimate 𝑥!" of the state 𝑥" at time step k given the 

knowledge of the process prior to time step k, up to and including time step k - 1

• The estimation equations incorporate the new measurements obtained at time-step k into the a 
priori estimate and are used to derive an improved a posteriori estimate "𝑥" of the true state 𝑥"

• Used quadratic prediction based Kalman filter:
• Uses quadratic relationship between the past, present and future/estimated state



Prediction and Estimation using Kalman 
Filtering (cont.) 
• Stage 1: 

Prediction
• Stage 2: 

Correction (Update)

"𝑥"|" = a posteriori state estimate at time k given observations up to and including at time k
𝑃"|" = a posteriori error covariance matrix (measure of estimated accuracy of the state estimate) 

Figure source: https://en.wikipedia.org/wiki/Kalman_filter



Kalman Filtering

• A linear system can be modeled as a pair of linear stochastic process and 
measurement equations
𝑥" = 𝐴𝑥"$% +	𝑤"   
𝑧" = 𝐻𝑥" +	𝑣"   

where 
𝑥 ∈ 𝑅& = the system state vector;
𝑧 ∈ 𝑅' = the measurement vector;
A = n×n is the state transition matrix that links the system state at the      

previous time step k−1 to the state at the current time step k;
H = m×n matrix that relates the system state and the measurement set 𝑧";
𝑤" ∈ 𝑅&	 = the process noise at time step k; assumed to be white;
𝑣" ∈ 𝑅'	 = measurement noise; assumed to be white.



Kalman Filtering (cont.) 

• The process noise and measurement noise are assumed to be mutually 
independent random variables with normal probability distributions

where 

𝑝 𝑤 ~	𝑁 0, 𝑄" 	  
𝑝 𝑣 ~	𝑁(0, 𝑅")  

𝑄" = the process noise covariance matrix
𝑅" = the measurement noise covariance matrix



Prediction Using Kalman Filtering

• Stage 1: Prediction

• Stage 2: Correction/LSE
• Applies both heuristic 

and statistical methods to 
identify suspected bad data 
points and topology changes

• Considers relationship 
between signals



Correction Using Kalman Filtering and LSE

• Displays PMU values and 
values computed by LSE, 
compares PMU and LSE values 
with State Estimator values

• Red graph – real-time PMU 
measurements; 
Pink graph – the same PMU 
measurements processed by 
the LSE (conditioned values); 
Orange line – State Estimator 
value. 



Parameter Learning for Kalman Filter

• During learning we want to learn the best parameters to maximize the likelihood of the input 
values

• A number of parameters affect filtering:
• Transition (process) variance
• Observation (measurement) variance
• Constraint variance

• At each step, we calculate the likelihood of the new input values and the derivatives of this 
likelihood by all parameters included in learning

• Make a small gradient step towards likelihood maximization 
• After several hundred steps, the parameters are adopted to the data
• Online learning is done continuously



Parameters Included in Learning
• Transition Variance

• Components of the process noise covariance matrix 𝑄"
• Difference between new and previous values (voltages at the next timestamp)
• The smaller the Transition Variance is, the closer the new values are to the previous ones, and 

the smoother output signals are

• Measurement Variance:
• Components of the measurement noise covariance matrix 𝑅" 
• Difference between the measured input values and the predicted ones using the Kalman filter

• Similar to measurement error 
• The smaller the Measurement Variance is, the closer the output signals are to the input signals

• Constraint Variance:
• Based on Kirchhoff’s law
• The smaller the Constraint Variance is, the more accurately Kirchhoff’s equations are satisfied



Learning is Disabled – 1 

Red graph – PMU measurements
Pink graph  – LSE values: learning disabled
Orange line – State Estimator value



Learning is Disabled – 2 

Pink graph  – LSE values: learning disabled
Orange line – State Estimator value



Learning is Enabled, Rate = 0.001

Red graph – PMU measurements
Pink graph  – LSE values: learning disabled
Orange line – State Estimator value



Learning is Enabled, Rate = 0.001 (cont.)

Red graph – PMU measurements
Pink graph  – LSE values: learning disabled
Orange line – State Estimator value



Learning is Enabled, Rate = 0.001 (cont.)

Pink graph  – LSE values: learning disabled
Orange line – State Estimator value



Learning is Enabled, Rate = 0.001 (cont.)

Pink graph  – LSE values: learning disabled
Orange line – State Estimator value



Learning is Enabled, Rate = 0.01

Red graph – PMU measurements
Pink graph  – LSE values: learning disabled
Orange line – State Estimator value



Learning is Enabled, Rate = 0.01 (cont.)

Pink graph  – LSE values: learning disabled
Orange line – State Estimator value



Learning is Enabled, Rate = 0. 1

Red graph – PMU measurements
Pink graph  – LSE values: learning disabled
Orange line – State Estimator value



Learning is Enabled, Rate = 0. 1 (cont.)

Pink graph  – LSE values: learning disabled
Orange line – State Estimator value



Conclusions
• PMU-ROSE creates the Kalman filter for each observable island

• Use of machine learning improves the accuracy of linear state estimation

• Online learning is done continuously



Thank you!

marvaiman@vrenergy.com


