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Motivation: Demand Response (DR} \ e

Transmission Distribution

* Flexibility such as demand
r| response (DR) enables

: W higher penetration of
7o renewable resources

€ Flexibility . ..
e Economic efficiency

Strbac, Goran, et al. "Cost-effective decarbonization in a decentralized market: The benefits of using flexible technologies and resources." IEEE Power and
Energy Magazine 17.2 (2019): 25-36.
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Today’s Demand Response in U.S.

2021 Residential Demand Response Program in United States

Total U.S. Actual Peak Demand Total U.S. Percentage of
Saving per Sector Customers Enrolled in DR
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 Residential DR largely remains untapped and has huge potential

Data source is from U.S Energy Information Administration (EIA)
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Past Residential DR Pilots \ =

* There are numerous DR Pilot programs
 California’s Statewide Pricing Pilot (2003-2004, 2016-2017)
* Low Carbon London (2011-2014)
e EnergyCoupon (2016 Summer, 2017 Summer)

 Residential DR data is private and inaccessible
 (Can we scale up existing data (small and limited) and make a
prediction?

Bainan Xia, et al. "EnergyCoupon: A Case Study on Incentive-based Demand Response in Smart Grid”, ACM e-Energy 2017
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Pilot Program Period

Flexibility (%)
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Question and Scope of This Work \ o |

* What does it mean by Creating Synthetic
Residential DR data?

* |s it useful to generate statistically
identical DR customer?

 Can we infer/predict what non-DR
customers would do?

* The answer to the question has no ground
truth because it has not happened, i.e,,
the answer is synthetic or counterfactual
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Challenges in DR \ o |

* DR depends on multiple factors

e Usage, Duration, Weather
* Information and Time provided, and other Externalities

* Residential DR: Individual Characteristics
 Responsiveness is conditional to multiple factors

 Two notable DR examples: Bitcoin Mining Facilities, Data Centers

e Rational Inattention (RI): Consider Power Flow vs Network Flow
 RI: Inability to process all information, but process pieces of information
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Rational Inattention on Customers \ b=

* Rational inattention plays ¢ Can residential customers do
less on mining facilities the same as mining facilities?

o * Do they have economic

° incentives to do the same as

mining facilities?

* Rl is more significant on
residential sector

Menati, Ali, et al. "High resolution modeling and analysis of cryptocurrency mining’s impact on power grids: Carbon footprint, reliability, and electricity price." Advances in
Applied Energy 10 (2023): 100136.
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Proposition: Generative Framework

1) Input/Conditions: DR customer data, multiple factors
2) Modeling: Train a generative model for conditional responsiveness

of DR customers
* Conditional to details of DR (price, duration, etc), weather, etc

3) Output: Generate Synthetic DR data
e Assume non-DR customers have the same conditional responsiveness

/Input/Condition\ 4 Modeling N/ Output )
(Consumption Data\ Generative
in Treatment Group Machine
@nd Condition Dataj Leai"ng
( . N\
Consumption Data Trained Control Group's
in Control Group Model —»  Synthetic DR
ode Consumption Data

and Condition Data
N AN VAN
e
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Inputs/Conditions to the Framework \ e

Consumption during DR

* Input (time series): responsiveness = : .
Baseline Consumption

 Conditions (categorical): Responsiveness, Temperature, Price
e Responsiveness: High, Medium, Low
* Temperature: High, Medium, Low (peak-hour annual percentile)
* Price: High, Medium, Low
 Conditions are arbitrary in computer vision and natural language
processing

* They are limited to categorical values in this work (Why?)
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Generative Machine Learning \ .

* Suppose responsiveness X q¢q 1S drawn from P 4,44 (%)
* Generative models aim to learn IP;,;,(x) and produce X

 Two popular generative models
* Variational Autoencoder (VAE) O O @

* Generative Adversarial Networks (GANSs)

\ Encoder A Decoder I
* Input: xg,4¢q and output: X 4¢4 | Y
* X44tq aNd X 4,4+, are statistically identical Inference model Generator model

* What does X;,:4, mean in residential sector?

G, Laurent et al. “Dynamical variational autoencoders: A comprehensive review”, Foundations and Trends® in Machine Learning, 2021
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Generative Machine Learning \ s |

 DRis conditional to price, weather, duration, information, etc
* Conditional VAE and Conditional GANs

Condition —

Condition —
O A
T Bneeder  Deeder
\ A J

| |

Inference model Generator model
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Output: Conditional Synthetic Data \ o |
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* Inputs (time series): Responsiveness

 Conditions (categorical): Responsiveness, Temperature, Price
 Generated Data: Conditional Responsiveness
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To sum up: Generative Framework
/Input/Condition\ 4 Modeling N/ Output )

Consumption Data Generative
in Treatment Group = Machine
and Condition Data Learning

\/

: Control Group's
T“';la'”eﬁ Synthetic DR
\ / R ode Consumption Data

Consumption Data
in Control Group
and Condition Data
VAN —/

 Learn conditional responsiveness from existing DR data

* Generate statistically identical responsiveness (not consumption)
e Conditioned on details of DR (User can choose conditions)

 Apply conditional responsiveness to non-DR customers

Lee, Shi, Xie, Working Paper 2023
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Concluding Remarks \ (s |

* We developed a generative framework for residential DR
* Learn responsiveness from existing DR data
* Apply conditional responsiveness to non-DR customers

 Residential DR is still data-hungry - size of original data is still
limited compared to applications such as computer vision and

natural language processing

* |[n these two applications, data is almost infinite

e Conditions could be as large as input sizes in these two applications

* |n this study, conditions are categorical (compressed) due to lack of data




