

A Generative Framework of Creating Synthetic Residential Demand Response Data

Kiyeob Lee, Ranyu Shi, Le Xie Texas A&M University

Lee, Shi, Xie, Working Paper 2023

Motivation: Demand Response (DR)

Flexibility such as demand response (DR) enables higher penetration of renewable resources

IEEE

PFS

Power & Energy Society

Economic efficiency

Strbac, Goran, et al. "Cost-effective decarbonization in a decentralized market: The benefits of using flexible technologies and resources." *IEEE Power and Energy Magazine* 17.2 (2019): 25-36.

Today's Demand Response in U.S.

IEEE

PES

Power & Energy Society*

Residential DR largely remains untapped and has huge potential

Data source is from U.S Energy Information Administration (EIA)

Past Residential DR Pilots

- There are numerous DR Pilot programs
 - California's Statewide Pricing Pilot (2003-2004, 2016-2017)
 - Low Carbon London (2011-2014)
 - EnergyCoupon (2016 Summer, 2017 Summer)

•

- Residential DR data is private and inaccessible
- Can we scale up existing data (small and limited) and make a prediction?

Question and Scope of This Work

Question and Scope of This Work

• What does it mean by Creating Synthetic Residential DR data?

- Is it useful to generate statistically identical DR customer?
- Can we infer/predict what non-DR customers would do?
- The answer to the question has no ground truth because it has not happened, i.e., the answer is synthetic or counterfactual

Challenges in DR

- DR depends on multiple factors
 - Usage, Duration, Weather
 - Information and Time provided, and other Externalities
 - Residential DR: Individual Characteristics
- Responsiveness is conditional to multiple factors
- Two notable DR examples: Bitcoin Mining Facilities, Data Centers

IEEE

- Rational Inattention (RI): Consider Power Flow vs Network Flow
- RI: Inability to process all information, but process pieces of information

Rational Inattention on Customers

Rational inattention plays
less on mining facilities

• Can residential customers do the same as mining facilities?

IEEE

- Do they have economic incentives to do the same as mining facilities?
- RI is more significant on residential sector

Menati, Ali, et al. "High resolution modeling and analysis of cryptocurrency mining's impact on power grids: Carbon footprint, reliability, and electricity price." Advances in Applied Energy 10 (2023): 100136.

Proposition: Generative Framework

- 1) Input/Conditions: DR customer data, multiple factors
- 2) Modeling: Train a generative model for conditional responsiveness of DR customers
 - Conditional to details of DR (price, duration, etc), weather, etc
- 3) Output: Generate Synthetic DR data
 - Assume non-DR customers have the same conditional responsiveness

Inputs/Conditions to the Framework

- Input (time series): responsiveness = $\frac{Consumption \ during \ DR}{Baseline \ Consumption}$
- Conditions (categorical): Responsiveness, Temperature, Price

IFFF

- Responsiveness: High, Medium, Low
- Temperature: High, Medium, Low (peak-hour annual percentile)
- Price: High, Medium, Low
- Conditions are arbitrary in computer vision and natural language processing
 - They are limited to categorical values in this work (Why?)

Generative Machine Learning

- Suppose responsiveness x_{data} is drawn from $\mathbb{P}_{data}(x)$
- Generative models aim to learn $\mathbb{P}_{data}(x)$ and produce \hat{x}
- Two popular generative models
 - Variational Autoencoder (VAE)
 - Generative Adversarial Networks (GANs)
- Input: x_{data} and output: \hat{x}_{data}
 - x_{data} and \hat{x}_{data} are statistically identical
- What does \hat{x}_{data} mean in residential sector?

Inference model Generator model

Generative Machine Learning

- DR is conditional to price, weather, duration, information, etc
 - Conditional VAE and Conditional GANs

Output: Conditional Synthetic Data

- Inputs (time series): Responsiveness
- Conditions (categorical): Responsiveness, Temperature, Price
- Generated Data: Conditional Responsiveness

To sum up: Generative Framework

- Learn conditional responsiveness from existing DR data
- Generate statistically identical responsiveness (not consumption)
 - Conditioned on details of DR (User can choose conditions)
- Apply conditional responsiveness to non-DR customers

Concluding Remarks

- We developed a generative framework for residential DR
 - Learn responsiveness from existing DR data
 - Apply conditional responsiveness to non-DR customers
- Residential DR is still data-hungry size of original data is still limited compared to applications such as computer vision and natural language processing
 - In these two applications, data is almost infinite
 - Conditions could be as large as input sizes in these two applications
 - In this study, conditions are categorical (compressed) due to lack of data