
Kiyeob Lee, Ranyu Shi, Le Xie
Texas A&M University

A Generative Framework of Creating 
Synthetic Residential Demand 

Response Data

Lee, Shi, Xie, Working Paper 2023



Motivation: Demand Response (DR)

Strbac, Goran, et al. "Cost-effective decarbonization in a decentralized market: The benefits of using flexible technologies and resources." IEEE Power and 
Energy Magazine 17.2 (2019): 25-36.

• Flexibility such as demand 
response (DR) enables 
higher penetration of 
renewable resources

• Economic efficiency



Today’s Demand Response in U.S.

• Residential DR largely remains untapped and has huge potential
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Residential
31.41 %

Industrial
45.60 %

Commercial
22.98 %

Total U.S. Actual Peak Demand
Saving per Sector

3,836 MW

2,806 MW

5,568 MW

Non-DR Residential
Customers

92.78 %

Residential
Customers

Enrolled in DR
Program

Total U.S. Percentage of
Customers Enrolled in DR

Data source is from U.S Energy Information Administration (EIA)



Past Residential DR Pilots
• There are numerous DR Pilot programs
• California’s Statewide Pricing Pilot (2003-2004, 2016-2017)
• Low Carbon London (2011-2014)
• EnergyCoupon (2016 Summer, 2017 Summer)
• …

• Residential DR data is private and inaccessible
• Can we scale up existing data (small and limited) and make a 

prediction?

Bainan Xia, et al. ”EnergyCoupon: A Case Study on Incentive-based Demand Response in Smart Grid”, ACM e-Energy 2017



Question and Scope of This Work
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Question and Scope of This Work
• What does it mean by Creating Synthetic 

Residential DR data?
• Is it useful to generate statistically 

identical DR customer?

• Can we infer/predict what non-DR 
customers would do?

• The answer to the question has no ground 
truth because it has not happened, i.e., 
the answer is synthetic or counterfactual



Challenges in DR

• DR depends on multiple factors
• Usage, Duration, Weather
• Information and Time provided, and other Externalities
• Residential DR: Individual Characteristics

• Responsiveness is conditional to multiple factors

• Two notable DR examples: Bitcoin Mining Facilities, Data Centers
• Rational Inattention (RI): Consider Power Flow vs Network Flow
• RI: Inability to process all information, but process pieces of information



Rational Inattention on Customers

• Rational inattention plays 
less on mining facilities
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• Can residential customers do 
the same as mining facilities?

• Do they have economic 
incentives to do the same as 
mining facilities?

• RI is more significant on 
residential sector

Menati, Ali, et al. "High resolution modeling and analysis of cryptocurrency mining’s impact on power grids: Carbon footprint, reliability, and electricity price." Advances in 
Applied Energy 10 (2023): 100136.



Proposition: Generative Framework
1) Input/Conditions: DR customer data, multiple factors
2) Modeling: Train a generative model for conditional responsiveness 

of DR customers
• Conditional to details of DR (price, duration, etc), weather, etc

3) Output: Generate Synthetic DR data
• Assume non-DR customers have the same conditional responsiveness
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Consumption Data

Input/Condition OutputModeling



Inputs/Conditions to the Framework

• Input (time series): responsiveness = !"#$%&'()"#	+%,)#-	./
01$23)#2	!"#$%&'()"#

• Conditions (categorical): Responsiveness, Temperature, Price
• Responsiveness: High, Medium, Low

• Temperature: High, Medium, Low (peak-hour annual percentile)

• Price: High, Medium, Low

• Conditions are arbitrary in computer vision and natural language 
processing
• They are limited to categorical values in this work (Why?)



Generative Machine Learning
• Suppose responsiveness 𝑥+1(1 is drawn from ℙ+1(1(𝑥)
• Generative models aim to learn ℙ+1(1 𝑥  and produce %𝑥

• Two popular generative models
• Variational Autoencoder (VAE)
• Generative Adversarial Networks (GANs)

• Input: 𝑥+1(1 and output: %𝑥+1(1
• 𝑥!"#"  and "𝑥!"#"  are statistically identical

• What does %𝑥+1(1 mean in residential sector?

G, Laurent et al. “Dynamical variational autoencoders: A comprehensive review”, Foundations and Trends® in Machine Learning, 2021

Inference model Generator model



Generative Machine Learning
• DR is conditional to price, weather, duration, information, etc
• Conditional VAE and Conditional GANs

Inference model Generator model

Condition Condition



Output: Conditional Synthetic Data

• Inputs (time series): Responsiveness
• Conditions  (categorical): Responsiveness, Temperature, Price
• Generated Data: Conditional Responsiveness



To sum up: Generative Framework
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• Learn conditional responsiveness from existing DR data
• Generate statistically identical responsiveness (not consumption)
• Conditioned on details of DR (User can choose conditions)

• Apply conditional responsiveness to non-DR customers
Lee, Shi, Xie, Working Paper 2023



Concluding Remarks
• We developed a generative framework for residential DR
• Learn responsiveness from existing DR data 
• Apply conditional responsiveness to non-DR customers

• Residential DR is still data-hungry - size of original data is still 
limited compared to applications such as computer vision and 
natural language processing
• In these two applications, data is almost infinite
• Conditions could be as large as input sizes in these two applications
• In this study, conditions are categorical (compressed) due to lack of data


