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Storage Can Help Solve Problems in

All Parts of The Grid
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PNNL Has Assessed Energy Storage and S
Microgrid Systems at More Than 30 Sites
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Energy Storage and Microgrid Data

Analytics
g System design and characteristics

e Energy storage technology, component sizing, physical capability, and
characteristics

m  Deployment scenarios

e Vertically integrated utilities, electricity markets, distribution utilities, and
large C&I customers

e Bulk energy, ancillary service, transmission-level, distribution-level, and
end-user services

mny  Dispatch and control strategies

e Co-optimization, rule-based control, mathematical programming,
stochastic/risk-aware control, learning-based method, hybrid-control

paa Regions and systems

e Different generation mix, grid infrastructure, market structures/rules,
distribution system capacity, and load growth rate
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Modeling With a Good Balance \ o= |
Between Fidelity and Simplicity

A set of equations and constraints, or tables representing operational flexibility
and physical constraints

 Often black- or grey-box models at the system level
» Relaxed and approximated models

Batteries Pumped Hydro Hydrogen
» Operational flexibility * Fixed vs adjustable speed « Multiple energy delivery
= Constant vs varying efficiency .« various configurations: separate ~ Pathways
» Static vs dynamic range and reversible pump/turbine as  * Component-level modeling
- Degradation effects well as ternary sets « Coupling among different
= Loss of life  Unit- and plant-level hydraulic pathways and grid services
short circuit

» Degradation in performance
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Performance Quantification e

Time series testing and operation datasets * - + . ’ - o F

over multiple seasons or years e e e i : - _ =
+ Data requirement
« Quality, granularity, consistency on| e N -

« Scarcity and insufficiency :: — . F — m

« Privacy and security R S R e -

w * 90 — *
?%E I}apid Operational Validation Initiative | * e | | =
ROVI W P womp womn  awe P wown wown

* Driven by DOE National Labs s s ma s
- Establish data collection framework and protocols Bankable storage technologies

for field deployments ‘ 15- to 20-year financial grade performance

- Performance prediction tools; engagement with a projections with 1 year of combined testing
larger storage community and validation

https://www.energy.gov/oe/articles/us-department-energy-opportunity-rapid-operational-validation-initiative-flow-batteries



https://www.energy.gov/oe/articles/us-department-energy-opportunity-rapid-operational-validation-initiative-flow-batteries
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Model Construction \ ‘

* Limitation of constant-efficiency models:
. . . 1'5; P € 7DS — — —charging 500 kW |7
" [—Pmin, Pmaxl: iINCapable of modeling varying | charging 400 kW

charging/discharging range £ As = f(p,s) | — smomoin|
= [_... inaccurate to represent energy capacity : R
*~,n": inaccurate to capture varying losses g e
 Constructing high-fidelity models through )
regression using testing data: 03 1
* Power measured at batteries and the grid-coupling .
point The gradient boosting machine
= Battery direct current and voltage (GBM) algorithm for ranking
» Sate of charge estimated by battery management predictor importance and
systems determining coefficients.

D. Wu, P. Balducci, A. Crawford, K. Mongird, and X. Ma, “Building battery energy storage system performance data into an economic assessment,” in
Proceedings of the IEEE Power and Energy Society General Meeting, 2020.
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Stochastic Sizing

A framework for optimization that involves /Pivamine same DER setection and st
unce rta N ty / DER prices é Min (inv. cost + exp. oper. cost)
. . DEl'i size limits subject to: surv. requirement

* First stage: making “here-and-now” decisions S reqiement of

Max surv. requirement

before the realization of uncertain parameters is subject to: net-cost constraint

known (a Slngle pOIICy) DER smesﬂ ﬂggggzcs):;v indicator
« Second stage: making decisions in response to brob, of ach seenis 9

each random outcome given the decisions made  /perparameters Operating stage: DER dispateh

at the first stage (a collection of recourse e e profi Grid-connectedmode | Islandmode

deCiSionS) ;lgtﬁ;}g'et::gts Min oper. cost Max surv. indicator

k subject to: system-level and DER constrajntSJ
Probability distribution for A finite number of possible
uncertain parameters realizations (scenarios)

Two-stage stochastic DER sizing method
Deterministic equivalent of a stochastic problem

D. Wu, X. Ma, S. Huang, T. Fu, and P. Balducci, “Stochastic optimal sizing of distributed energy resources for a cost-effective and resilient microgrid,” Energy, vol.
198, May 2020, 117284




Data Analytics for Load Construction
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High Frequency Data Ho_url_y Load Weekday/ Group Load
Hourl Deviation from f— Weekend? by H
dn orecast e T
ARIMA Approach
Low Frequency l
Data (Daily)

Arima Model
95 CI for Next Hour

Distribution for
Each Hour

General requirements:

Data

g . White Noise | | Red Noise | | Discontinuity
* Need to reproduce the overall statistical attributes . Mo F ]
from the datasets SEINGEA |

Intra-day Hourly Data

Intra-day Hourly Candidates

Data Candidates Data Candidates

* N eed to Ca ptu re Ch a n g eS i n patte rn S by Seaso n aI ity’ Simulate}:j Hourly Simulatei;j Hourly Simulate}:i Hourly
Wee kd ay/Wee ke n d , a n d d ay/n i g ht Data Candidates Data Candidates Data Candidates
Methods: Weaiher bt | L e T
L= - : : _____ Days ____ '
» Exploratory data analyses: summary statistics [ oo | | weatrPageast |

extraction, pattern recognition, and spectral analysis _ - ey
of individual time series Mo — Respettto Propabity

Historical Data
« Data imputation or reconstruction Day-ahead

Load Forecast [—
* Neural Network models == o

[}
i ]
! Acwualtoading, | ., Respectto
. Previous Days 1 1 Previ .
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Ag

T. Fu, H. Zhou, X. Ma, Z. Hou, and D. Wu, “Predicting peak day and peak hour of electricity demand with ensemble machine learning,” Front. Energy Res., vol.
10, Nov. 2022.

D. Wu, X. Ma, T. Fu, Z. Hou, PJ Rehm, and N. Lu, “Design of a battery energy management system for capacity charge reduction,” IEEE Open Access J. Power
Energy, vol. 9, pp. 351-360, Aug. 2022.




Learning-based Control

Data-driven methods face practical challenges
such as potential hazards to microgrids during

Deep reinforcement learning from

demons_trat!or]s to assist .SerVIC.:e _ on-line training opportunities and insufficient on-
restoration in islanded microgrids: e e g
 Pre-training stage: imitation learning is
applied to equip the control agent with expert DDPGIDRLAGEN gy, Extemalemvironmens
experiences to guarantee acceptable initial oo mtion | Sy A SV Oty e st st
performance. fomgh i, -;gg% %%% ‘—A T a
- Online training stage: action clipping, reward “Ex CFE SRR <h

leveraged to ensure safe exploration while —— Pt
. . Calculate < Store the model and return the
accelerating the training process. e los wnsiton | power mbalance,

function (state, action, voltage violation and
- - reward, g- h
N i) operation cost as the
i ‘ — reward GUROBI
Replay buffer ~ Tensorflow ~  ~~—ouofp— S oemmzation
initialization

shaping, and expert demonstrations are —
demonstrations

Y. Du and D. Wu, “Deep reinforcement learning from demonstrations to assist service restoration in islanded microgrids,” IEEE Transactions on Sustainable
Energy, vol. 13, no. 2, pp. 1062-1072, Apr. 2022.

A. Das D. Wu, and Z. Ni, “Approximate dynamic programming with customized policy design for microgrid online dispatch under uncertainties,” Int. J. Electr.
Power Energy Syst., vol. 142, Nov. 2022, 108359.
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M ic rog ri d o System Resilience
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Y. Zhu, X. Ma, D. Wu, and J. Joseph, “A multi-objective microgrid assessment and sizing framework for economic and resilience benefits,” Proc. IEEE PES Gene.
Meet., July 2023.
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Conclusions and Future Work

» Storage-enabled microgrids are becoming critical solutions in enhancing
resilience and offering the required flexibility and capacity

* The emergence of advanced data analytics and machine learning techniques
opens up new opportunities for the design and operation of microgrids

 Additional research is needed to further take advantage of data analytics and
machine learning in this field:

» Risk-averse control

» Extreme weather conditions
» Rate design

» Uncertainties

* It's crucial that all stakeholders come together to storage-enabled microgrid
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Di Wu
di.wu@pnnl.gov



