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• Conclusion and Future Work



Data in Power Distribution Grids

A Power distribution grid

3



Exemplary Real Data from Utilities
Account time kWH or V time kWH or V time kWH or V time kWH or V

100000001 KWH 201704010100 0.392 201704010200 0.257 201704010300 0.215 201704010400 0.239
100000001 VOLTS 201704010100 239 201704010200 239 201704010300 238 201704010400 240
100000002 KWH 201704010100 0.245 201704010200 0.204 201704010300 0.252 201704010400 0.342
100000002 VOLTS 201704010100 241 201704010200 240 201704010300 240 201704010400 240
100000003 KWH 201704010100 1.479 201704010200 0.417 201704010300 0.816 201704010400 0.414
100000003 VOLTS 201704010100 240 201704010200 239 201704010300 239 201704010400 240
100000004 KWH 201704010100 1.009 201704010200 0.555 201704010300 0.39 201704010400 0.382
100000004 VOLTS 201704010100 241 201704010200 237 201704010300 237 201704010400 239
100000005 KWH 201704010100 0.798 201704010200 0.809 201704010300 0.87 201704010400 0.692
100000005 VOLTS 201704010100 239 201704010200 238 201704010300 238 201704010400 240
100000006 KWH 201704010100 0.109 201704010200 0.188 201704010300 0.205 201704010400 0.148
100000006 VOLTS 201704010100 241 201704010200 240 201704010300 240 201704010400 242
100000007 KWH 201704010100 1.199 201704010200 1.512 201704010300 1.759 201704010400 1.474
100000007 VOLTS 201704010100 241 201704010200 240 201704010300 239 201704010400 241
100000008 KWH 201704010100 0.422 201704010200 0.419 201704010300 0.43 201704010400 0.537
100000008 VOLTS 201704010100 239 201704010200 239 201704010300 238 201704010400 240
100000009 KWH 201704010100 2.288 201704010200 2.278 201704010300 2.335 201704010400 2.297
100000009 VOLTS 201704010100 243 201704010200 242 201704010300 242 201704010400 242
100000010 KWH 201704010100 0.223 201704010200 0.257 201704010300 0.292 201704010400 0.25
100000010 VOLTS 201704010100 242 201704010200 241 201704010300 241 201704010400 241

Hourly energy & instantaneous voltage Time
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Distribution System Data Sharing
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With permission from our utility partner, we share a real 
distribution grid model with one-year smart meter 
measurements. This dataset provides an opportunity for 
researchers and engineers to perform validation and 
demonstration using real utility grid models and field 
measurements.
• The system consists of 3 feeders and 240 nodes and is 

located in Midwest U.S.
• The system has 1120 customers and all of them are 

equipped with smart meters. These smart meters 
measure hourly energy consumption (kWh). We share 
the one-year real smart meter measurements for 2017.

• The system has standard electric components such as 
overhead lines, underground cables, substation 
transformers with LTC, line switches, capacitor banks, 
and secondary distribution transformers. The real 
system topology and component parameters are 
included. Test system diagram

You may download the dataset at: http://wzy.ece.iastate.edu/Testsystem.html , including system description (in 
.doc and .xlsx), smart meter data (in .xlsx), OpenDSS model, and Matlab code for quasi-static time-series simulation.

http://wzy.ece.iastate.edu/Testsystem.html


Distribution Grid Topology & 
Parameter Identification
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• Complete and accurate distribution grid models are essential to system 
monitoring and control.

• Many small and medium utilities only have simple one-line diagrams of 
their systems without any detailed information.

• System models are often incomplete or outdated due to the frequent 
system expansion and reconfiguration.

• Conventional field inspection is laborious, costly, and time-consuming, 
especially for large-scale systems.



Existing Work and Challenges

• Using Branch flow model and smart meter data 
(A. M. Prostejovsky 16, H. Xu 18, W. Wang 20)
ØLimitation: require prior knowledge (i.e., R/X 

ratios of all line sections and network 
connectivity).

ØReason for this requirement: searching space 
of the optimization (ill-conditioned).

ØAnother challenge: scalability and 
computational complexity. 

How to perform real-time topology and parameter identification 
using very limited yet readily available SM data?

• Using Y-bus injection model and phasor information (J. Yu 19, O. Ardakanian 19, Y. Yuan 20)
Ø Limitation: require full coverage of µPMUs (cost-prohibitive).
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Our Solution
ü Topology Identification: Modeling the distribution network as a graph and identify its weighted 
Laplacian matrix using SM data streams, where the matrix has a special structure that reveals the 
network connectivity.

üHigh computational efficiency.

üRobustness with respect to heterogeneous R/X ratios and model/measurement errors.
ü Parameter Estimation: designing a bottom-up sweep algorithm to identify line impedances. 

üBased on the full nonlinear power flow, a least absolute deviations (LAD) with mixed-integer 
semidefinite programming (MISDP) model, and a least square (LS) model with mixed-integer 
second-order cone programming (MISOCP) model have been developed. 

üAdding a library of R/X ratios (rather than exact R/X of all line sections) as a constraint to narrow 
down the search space. 

üDividing the network into multiple layers. Parameter identification and power flow calculations 
are performed layer-by-layer in an alternate manner from bottom to top layers. 

Y. Guo, Y. Yuan, and Z. Wang, "Distribution Grid Modeling Using Smart Meter Data," arXiv preprint arXiv:2103.00660, 2021. 
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Distribution Grid Topology Identification
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• Our topology identification approach builds on the linear approximation of the 
branch flow model.

𝐯 ≅ 2𝐀!"𝐑𝐀!#𝐩 + 2𝐀!"𝐗𝐀!#𝐪 − 𝑣$𝐀!"𝐚$

where 𝐯, 𝐩, 𝐪 denote the vectors collecting squared bus voltage magnitudes, real 
power, and reactive power injections; 𝑎!, 𝐴" " ∈ 0,±1 #$% ×#	is the incidence 
matrix of the radial-topology graph; R and X are diagonal resistance and reactance 
matrices; Y is a weighted Laplacian matrix of the network with a sparse structure. 

1
2
𝐀𝐗!#𝐀" 𝐯 − 𝑣$1% = 𝐀𝐗!#𝐑𝐀!#𝐩 + 𝐪

𝐘 = 𝐀𝐗!#𝐀"; 	𝚽 = 𝐀𝐗!#𝐑𝐀!#

• For a radial distribution network, A is non-singular and 𝐀'"𝐚! = 1# 

(1)

(2)

(3)



Weighted Laplacian Matrix of the Network
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• 𝐘	 holds a salient feature: for any connected nodes i and j, 𝑦() < 0 and for any non-
connected nodes 𝑦() = 0. 

• If one can approximately identify Y, the topology can be extracted by observing the 
unique features of Y.

𝐘 ≔ 𝑦() #×#
Proposition 1: is a sparse symmetric matrix :

(4)

3 −1 0 0 −2 0
−1 5 −4 0 0 0
0 −4 4 0 0 0
0 0 0 6 −1 −5
−2 0 0 −1 3 0
0 0 0 −5 0 5



Weighted Laplacian Matrix Identification
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• Assume the network has a homogeneous R/X ratio, &!
'!
= ⋯ = &"

'"
= 𝜆, 𝚽 reduces to                        

𝚽 = 𝐀diag &!
'!
, … , &"'" 𝐀!# = 𝜆1%. 

• For heterogeneous networks, our method still works because we do not require accurate 
estimation of 𝐘 and only need to distinguish zero and negative non-diagonal entries to 
identify connectivity, which will be proved in case study.

• The error vector regarding 𝑘-th measurement can be defined based on (2).

𝑒( ≔ 𝐘 𝐯( − 𝑣$(1% − 2𝜆𝐩( − 2𝐪(

• Our Model: Based on (5) and a time window of length K, we develop a linear LS regression 
mode to estimate Y. 

(5)

(6)

#
)𝐀𝐗

!#𝐀" 𝐯 − 𝑣$1% = 𝐀𝐗!#𝐑𝐀!#𝐩 + 𝐪 =>
1
2
𝒀 𝐯 − 𝑣$1% = 𝜆𝐩 + 𝐪

min
*,,

[𝑒#, … , 𝑒-] ))



13-Bus Test Feeder 37-Bus Test Feeder 69-Bus Test Feeder

Estimated Weighted Laplacian Matrix for IEEE 13-, 37-, 69-Bus 
Test Feeder
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• The nodal load demand is calculated based on our real smart meter data with 1-h 
resolution. The length of window is selected as 200.

• Even though our method is derived on the assumption of a homogeneous R/X ratio, it 
shows the robustness to the systems with heterogeneous R/X ratios.

• The minimum and maximum R/X values of the three feeders are {0.5153, 2.0655}, {1.4536, 
2.7482} and {0.4, 3.4}, respectively (three heterogeneous feeders).



13-Bus Test Feeder 37-Bus Test Feeder 69-Bus Test Feeder

Estimated Weighted Laplacian Matrix for IEEE 13-, 37-, 69-Bus 
Test Feeder
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𝐘∗ from (6) 



Bottom-Up Sweep Parameter Identification
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• Decomposing a radial distribution network into multiple 
layers labeled 1,… , 𝐿 (where L is the bottom layer).

• Our bottom-up sweep algorithm performs the line flow 
and line parameter estimation in an alternating way 
based on the layers of the network.

• Addressing the dimensionality issue and enabling 
parallel computation of all line sections within the same 
layer.



Branch Flow Model
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Branch model

• The proposed line impedance estimation establishes on 
the voltage drop relationship over a branch that can be 
modeled as: 

Branch Flow: 𝑃)* = 𝑃) +
+! ,!

"$-!
"

.!
, 𝑄)* = 𝑄) +

/! ,!
"$-!

"

.!

Voltage: 𝑣( − 𝑣) = 2 𝑟)𝑃) + 𝑥)𝑄) +
+!
"$/!

" ,!
"$-!

"

.!

• 𝑃)*	and 𝑄)*  denote power flows out of the upstream node 𝑖; 𝑃) and 𝑄) denote power 
flows into the downstream node 𝑗. 

• “Upstream” and “downstream” represent the relative positions of the nodes and 
power could flow in either direction.



Network Parameter Estimation Model 
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• The parameter estimation establishes on the voltage drop over a branch that is 
defined as follows:

𝑒)0 ≔ 𝑣(0 − 𝑣)0 − 2 𝑟(𝑃)0 + 𝑥)𝑄)0 − 𝑅) + 𝑋) B
𝑃)0

1
+ 𝑄)0

1

𝑣)0

• Based on (7) and the R/X ratio library,  the line parameter estimation is cast as a 
mixed-integer nonlinear programming model.

min
2#,+!,/!,4!,5!

𝑒)
%

,subject	to	𝑅) = 𝑟)1,𝑋) = 𝑥)1,𝑟) =N
67%

8

𝜆6 𝛼6𝑥)	,

N
67%

8

𝛼6 = 1, 𝛼6 ∈ 0,1 , ∀𝑧.

(7)

(8)



Estimated Line Parameters for IEEE 13- and 37-Bus Test Feeder
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Estimated Line Parameters for IEEE 69-Bus Test Feeder
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Conclusion and Future Work
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• Smart meter data, although may be of low resolution and limited measurement 
variables, can still be used to greatly help distribution system monitoring and 
operation. There are many applications such as network modeling, outage detection 
and behind-the-meter solar disaggregation.  

• We demonstrated how to use smart meter data together with optimization and 
machine learning to estimate topology and line parameters in radial distribution 
systems. 

• In the future, we will focus on using smart meter data to identify/calibrate network 
models in unbalanced mesh distribution systems. 



Reference

20

[1] J. Yu, Y. Weng, and R. Rajagopal, “PaToPaEM: A data-driven parameter and topology joint estimation 
framework for time-varying system in distribution grids,” IEEE Transactions on Power Systems, vol. 34, no. 3, 
pp. 1682-1692, May 2019.
[2] O. Ardakanian, Y. Yuan, V. Wong, R. Dobbe, S. Low, A. von Meier, and C. J. Tomlin, “On identification of 
distribution grids,” IEEE Transactions on Control of Network Systems, vol. 6, no. 3, pp. 950-960, Sep. 2019.
[3] Y. Yuan, S. H. Low, O. Ardakanian, and C. J. Tomlin, “Inverse Power Flow Problem,” [Online]. Available: 
https://arxiv.org/pdf/1610.06631.pdf.
[4] A.  M.  Prostejovsky,  O.  Gehrke,  A.  M.  Kosek,  T.  Strasser,  and  H.  W. Bindner, “Distribution line 
parameter estimation under consideration of measurement  tolerances,” IEEE Transactions Industrial 
Informatics,  vol.12, no.2, pp. 726–735, 2016.
[5] H. Xu, A. D. Domínguez-García, and P. W. Sauer, “A data-driven voltage control framework for power 
distribution systems,” In Proceedings of IEEE Power and Energy Society General Meeting, pp. 1-5, Aug. 
2018.
[6] W. Wang and N. Yu, “Parameter estimation in three-phase power distribution networks using smart meter 
data,”2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), pp. 1–6,  
2020.
[7] Y. Guo, Y. Yuan, and Z. Wang, "Distribution Grid Modeling Using Smart Meter Data," arXiv preprint 
arXiv:2103.00660, 2021. 

https://arxiv.org/pdf/1610.06631.pdf


Thank You!
Q & A

Zhaoyu Wang
http://wzy.ece.iastate.edu

http://wzy.ece.iastate.edu/


Smart Meter Data Collection

K. K. Kee, S. M. F. Shahab and C. J. Loh, “Design and development of an innovative smart metering system with GUI-based NTL detection platform”
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Smart Meter Data Pre-Processing
• Smart Meter Data Problems:

Ø Outliers/Bad Data
Ø Communication Failure
Ø Missing Data

• Counter-Measures:
ü Engineering intuition (data 

inconsistency)
ü Conventional Statistical Tools (e.g. Z-

score)
ü Robust Computation (e.g. relevance 

vector machines)
ü Anomaly Detection Algorithms
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Recovering Topology From Estimated 𝐘^∗
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• DBSCAN can marking as anomaly 
points that lie alone in low-
density regions.

• Advantage: DBSCAN can 
discover clusters with arbitrary 
shapes.

• DBSCAN does not require a prior 
specification on the number of 
clusters.

• Recovering the topology from 𝐘∗ is cast as an anomaly detection problem.  

• Our Solution: We have utilized a density based spatial clustering of applications 
with noise (DBSCAN) method to extract the topology from 𝐘∗.



Estimated Topology for IEEE 13-, 37-, 69-Bus Test 
Feeder

𝐘∗ from 
(6) 

𝐓𝐨𝐩𝐨𝐥𝐨𝐠𝐲	
𝐑𝐞𝐜𝐨𝐯𝐞𝐫𝐲

100% 100% 98%𝟓𝟎𝟎 
Simulations
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LAD Parameter Estimation Model 

• The Big-M technique is 
exploited to linearize the 
bilinear term 𝛼!𝑥".

• We rewrite (8) without L1-
norm operator by introducing 
the auxiliary variables. The 
SPD relaxation is used to 
tackle the non-convex 
quadratic equalities. 

min
/#,&$,'$,0$,1$,2$

%
	 C

(3#

-

𝜃4(

subject	to	 𝜃4( ≥ 𝑒4(, ∀𝑘

𝐖4
& =

1 𝑟4
𝑟4 𝑅4

≽ 0, rank 𝐖4
& = 1, ∀𝑗

C
53#

6

𝛼5 = 1, 𝛼5 ∈ 0,1 , ∀𝑧.

−𝜃4(≤ 𝑒4(, ∀𝑘

−𝑀4 1 − 𝛼5 ≤ 𝑟4 − 𝜆5𝑥4 ≤ 𝑀4 1 − 𝛼5 , ∀𝑧

𝐖4
' =

1 𝑥4
𝑥4 𝑋4

≽ 0, rank 𝐖4
' = 1, ∀𝑗

(9)
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LS Parameter Estimation Model 
• The Big-M technique is 

exploited to linearize the 
bilinear term 𝛼"𝑥#.

• We rewrite (8) by introducing 
the auxiliary variable 𝜇#, and 
additionally imposing the 
constraints. 

• Relaxing the quadratic 
equalities, we obtain a 
MISOCP model.

min
/#,&$,'$,0$,1$,7$

	 𝜇4

subject	to	
𝜇4 − 1
2
𝑒4 )

≤
𝜇4 + 1
2

C
53#

6

𝛼5 = 1, 𝛼5 ∈ 0,1 , ∀𝑧.

−𝑀4 1 − 𝛼5 ≤ 𝑟4 − 𝜆5𝑥4 ≤ 𝑀4 1 − 𝛼5 , ∀𝑧

(10)

𝑅4 − 1
2
𝑟4 )

≤
𝑅4 + 1
2

𝑋4 − 1
2
𝑥4 )

≤
𝑋4 + 1
2
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Exactness of SDP and SOCP Relaxation of IEEE 37-
Bus Test Feeders
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• To quantify the exactness of SDP and SOCP relaxation in (9) and (10), we compute 
the ration between the largest two eigenvalues of 𝐖)

+	and 𝐖)
/	and the resultant 

errors 𝜀)+ and 𝜀)/, respectively. 



Exactness of SDP and SOCP Relaxation of IEEE 13- 
and 69-Bus Test Feeders

ü The SDP relaxation is exact on all branches in three cases.
29



Estimated Line Parameters for IEEE 69-Bus Test 
Feeder - Summary
SDP-based LAD model:
• For the IEEE 13-bus feeder, the largest relative errors (among all branches) for 𝑟$ and 𝑥$ are 
3.331×10%&% and 3.335×10%&%. 

• For the IEEE 37-bus feeder, the largest relative errors (among all branches) for 𝑟$ and 𝑥$ are 
3.402×10%'% and 3.403×10%'%. 

• For the IEEE 69-bus feeder, the largest relative errors (among all branches) for 𝑟$ and 𝑥$ are 
1.444×10%'% and 7.061×10%&%. 

SOCP-based LS model:
• For the IEEE 13-bus feeder, the largest relative errors (among all branches) for 𝑟$ and 𝑥$ are 0.256% 

and 0.952%. 
• For the IEEE 37-bus feeder, the largest relative errors (among all branches) for 𝑟$ and 𝑥$ are 0.251% 

and 0.958%. 
• For the IEEE 69-bus feeder, the largest relative errors (among all branches) for 𝑟$ and 𝑥$ are 33.95% 

and 46.81%.	 But these large errors (≥ 5%) only occur in a few branches with high R/X ratios 
(17,34,39,45, and 68). 
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