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Exemplary Real Data from Utilities (opes | G1EEE

T|+me Hourly energy &Jnstantaneous voltage

Account time kWH or V time kWH or V time kWH or V time kWH or V
100000001 KWH 201704010100 | 0.392 (201704010200, 0.257 | 201704010300 | 0.215 | 201704010400 | 0.239
100000001 | VOLTS |201704010100| 239 (201704010200, 239 |201704010300 | 238 | 201704010400 | 240
100000002 KWH 201704010100 | 0.245 |201704010200{ 0.204 | 201704010300 0.252 201704010400 | 0.342
100000002 VOLTS 201704010100 241 201704010200, 240 201704010300 240 201704010400 240
100000003 KWH 201704010100 | 1.479 |201704010200{ 0.417 | 201704010300 0.816 201704010400 | 0.414
100000003 | VOLTS |201704010100| 240 (201704010200, 239 |201704010300 | 239 | 201704010400 | 240
100000004 KWH 201704010100 | 1.009 (201704010200 0.555 | 201704010300 | 0.39 | 201704010400 | 0.382
100000004 | VOLTS |201704010100| 241 [201704010200, 237 | 201704010300 | 237 | 201704010400 | 239
100000005 KWH |201704010100| 0.798 (201704010200, 0.809 | 201704010300 | 0.87 | 201704010400 | 0.692
100000005 | VOLTS |201704010100| 239 [201704010200, 238 |201704010300 | 238 | 201704010400 | 240
100000006 KWH 201704010100 | 0.109 (201704010200 0.188 | 201704010300 | 0.205 | 201704010400 | 0.148
100000006 VOLTS 201704010100 241 |201704010200, 240 201704010300 240 201704010400 242
100000007 KWH 201704010100 | 1.199 |201704010200{ 1.512 | 201704010300 1.759 201704010400 1.474
100000007 VOLTS 201704010100 241 201704010200, 240 201704010300 239 201704010400 241
100000008 KWH 201704010100 | 0.422 (201704010200 0.419 | 201704010300 | 0.43 | 201704010400 | 0.537
100000008 | VOLTS |201704010100| 239 [201704010200, 239 |201704010300 | 238 | 201704010400 | 240
100000009 KWH 201704010100 | 2.288 |201704010200{ 2.278 | 201704010300 2.335 201704010400 2.297
100000009 VOLTS 201704010100 243 1201704010200, 242 201704010300 242 201704010400 242
100000010 KWH 201704010100 | 0.223 |201704010200{ 0.257 | 201704010300 0.292 201704010400 0.25
100000010 VOLTS 201704010100 242 1201704010200, 241 201704010300 241 201704010400 241
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Distribution System Data Sharing (s

With permission from our utility partner, we share a real == e
distribution grid model with one-year smart meter PO S S-S S . o o0
measurements. This dataset provides an opportunity for . IR v R
researchers and engineers to perform validation and i G : : N e
demonstration using real utility grid models and field D | P "
measurements. o e g g 97 :
* The system consists of 3 feeders and 240 nodes and is o IR S .-
located in Midwest U.S. s 1 L G 4 ’-
* The system has 1120 customers and all of them are S | T S {:jj
equipped with smart meters. These smart meters L T e e e e S R L T T S S e
zzzzz L me o

measure hourly energy consumption (kWh). We share =

3112 3111 3110 3109 3108

the one-year real smart meter measurements for 2017. ‘s-- . ::: ) ‘.‘.‘:‘ ‘ : Eii
* The system has standard electric components such as SR A . : , o R T ]

overhead lines, underground cables, substation : : "o n.3 e L o

transformers with LTC, line switches, capacitor banks, o R ’ IR meeeee e

and secondary distribution transformers. The real DR A .~ 0-0-0-0 6 i., . 0o :

system topology and component parameters are AT S e

included. Test system diagram

You may download the dataset at: http://wzy.ece.iastate.edu/Testsystem.html , including system description (in
.doc and .xIsx), smart meter data (in .xlsx), OpenDSS model, and Matlab code for quasi-static time-series simulation.
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Distribution Grid Topology & \ pa | S1EEE
Parameter Identification

 Complete and accurate distribution grid models are essential to system
monitoring and control.

 Many small and medium utilities only have simple one-line diagrams of
their systems without any detailed information.

e System models are often incomplete or outdated due to the frequent
system expansion and reconfiguration.

e Conventional field inspection is laborious, costly, and time-consuming,
especially for large-scale systems.



Existing Work and Challenges \ (g#es | GIEEE

e Using Y-bus injection model and phasor information (J. Yu 19, O. Ardakanian 19, Y. Yuan 20)

» Limitation: require full coverage of uPMUs (cost-prohibitive).

400 Without Prior Knowledge of r/x ratios
* Using Branch flow model and smart meter data R

(A. M. Prostejovsky 16, H. Xu 18, W. Wang 20) [ x

200

Error (%)

» Limitation: require prior knowledge (i.e., R/X
ratios of all line sections and network 0 11] : J; '43 mo . W] am B

. . 5 6 7 8 9 10
connectivity). With Prior Knowledge of r/x ratios

» Reason for this requirement: searching space < sl | = b
of the optimization (ill-conditioned). P T
> Another challenge: scalability and (5 Iﬂ
computational complexity. D > 2 4 5 & 7 & @ 10

Line No.

How to perform real-time topology and parameter identification
using very limited yet readily available SM data?
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Our Solution (epes | @IEEE

v’ Topology Identification: Modeling the distribution network as a graph and identify its weighted
Laplacian matrix using SM data streams, where the matrix has a special structure that reveals the
network connectivity.

v'High computational efficiency.

v'Robustness with respect to heterogeneous R/X ratios and model/measurement errors.
v Parameter Estimation: designing a bottom-up sweep algorithm to identify line impedances.

v'Based on the full nonlinear power flow, a least absolute deviations (LAD) with mixed-integer
semidefinite programming (MISDP) model, and a least square (LS) model with mixed-integer
second-order cone programming (MISOCP) model have been developed.

v'Adding a library of R/X ratios (rather than exact R/X of all line sections) as a constraint to narrow
down the search space.

v'Dividing the network into multiple layers. Parameter identification and power flow calculations
are performed layer-by-layer in an alternate manner from bottom to top layers.

Y. Guo, Y. Yuan, and Z. Wang, "Distribution Grid Modeling Using Smart Meter Data," arXiv preprint arXiv:2103.00660, 2021.
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 QOur topology identification approach builds on the linear approximation of the
branch flow model.

v=2ATRA 'p + 2ATXA1q —vyA Ta, (1)
e For a radial distribution network, A is non-singularand A~Ta, = 1,,
1
EAx-lAT(v —19l,) = AX"'RA p+q (2)
Y = AX1AT; & = AX"'RA! (3)

where v, p, q denote the vectors collecting squared bus voltage magnitudes, real
power, and reactive power injections; [ag, AT]T € {0, +1}*+1*" js the incidence
matrix of the radial-topology graph; R and X are diagonal resistance and reactance
matrices; Y is a weighted Laplacian matrix of the network with a sparse structure.



Weighted Laplacian Matrix of the Network \ (e#s | IEEE

Proposition 1:

Y = |y
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* Y holds a salient feature: for any connected nodes / and j, y;; < 0 and for any non-
connected nodes y;; = 0.

* If one can approximately identify Y, the topology can be extracted by observing the
unique features of Y.



Weighted Laplacian Matrix Identification (opes | @1

 Assume the network has a homogeneous R/X ratio, ;—1= =;—" = A, ® reduces to
1 n
® = Adiag (2, ..., =) A™! = 21,

* For heterogeneous networks, our method still works because we do not require accurate
estimation of Y and only need to distinguish zero and negative non-diagonal entries to
identify connectivity, which will be proved in case study.

* The error vector regarding k-th measurement can be defined based on (2).
1 Aw—1AT —1pa-1 1
EAX A'(v—1y1,,)) =AX""'RA"'p+q=> EY(V—Voln) =Ap+q

ek = Y(vF —v{1,) — 2ap* — 2qF (5)

* Our Model: Based on (5) and a time window of length K, we develop a linear LS regression
mode to estimate Y.

min|[e?, ..., eX]|3 (6)

11



Estimated Weighted Laplacian Matrix for IEEE 13-, 37-, 69}&5\ @;ES
Test Feeder
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 The nodal load demand is calculated based on our real smart meter data with 1-h
resolution. The length of window is selected as 200.

* Even though our method is derived on the assumption of a homogeneous R/X ratio, it
shows the robustness to the systems with heterogeneous R/X ratios.

* The minimum and maximum R/X values of the three feeders are {0.5153, 2.0655}, {1.4536,
2.7482} and {0.4, 3.4}, respectively (three heterogeneous feeders).
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Bottom-Up Sweep Parameter Identification \ @;Es

* Decomposing a radial distribution network into multiple
layers labeled 1, ..., L (where L is the bottom layer). /Start from Layer I—L/

. _ | . y
Our bottom-up sweep algorithm performs the line flow Compute P, O of layer |

and line parameter estimation in an alternating way | ing P, 0 of /-1 layer and |€——
based on the layers of the network. SM data at nodes

v

* Addressing the dimensionality issue and enabling [ Solve r and x of each
parallel computatlon of all line sections within the same branch in layer /

I aye r Layer 3 ‘ Layer 4 ¢
: ‘ Update P, Q of layer / [=1-1

Layer 2 ‘




Branch Flow Model (s | SIEEE

 The proposed line impedance estimation establishes on

the voltage drop relationship over a branch that can be Branch model

modeled as: P’.,Ql. P Q
/ J(P +QJ) X j (P'2+Q]2) ..... O ]> / .ﬁ_@.’i---
Branch Flow: P; = P; + , Qi =Q; +
Vj Vj v, rj,:):j vj N
74X P?+Q% upstream » downstream
Voltage: v; — v; = 2(r;P; +xQ])+( GALS)

Vj
Pj’ and Q]’- denote power flows out of the upstream node i; P; and (; denote power
flows into the downstream node j.

“Upstream” and “downstream” represent the relative positions of the nodes and
power could flow in either direction.

15



Network Parameter Estimation Model \ @-}3\ YIEEE

 The parameter estimation establishes on the voltage drop over a branch that is

defined as follows:
2 2
(P)" + (@)
) - (7)

k
Vj

* Based on (7) and the R/X ratio library, the line parameter estimation is cast as a
mixed-integer nonlinear programming model.

ejk = pf — v}‘ — Z(rink + ij}‘) — (Rj + X

Z
min | €; | ubjectto R; = r*,X; = x?,r. = , 8
aZJTjrxj;Rj;Xj ‘ ]‘ 1$ ] J J J ] ’T) AZ aZx_] ] ( )
Z z=1
z aZ — 1; az S {0,1}, VZz.
z=1
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69- Bus Test Feeder
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Conclusion and Future Work (epes | QIEEE

 Smart meter data, although may be of low resolution and limited measurement
variables, can still be used to greatly help distribution system monitoring and
operation. There are many applications such as network modeling, outage detection
and behind-the-meter solar disaggregation.

* We demonstrated how to use smart meter data together with optimization and

machine learning to estimate topology and line parameters in radial distribution
systems.

* |n the future, we will focus on using smart meter data to identify/calibrate network
models in unbalanced mesh distribution systems.

19
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Smart Meter Data Pre-Processing \ (s

0.12
- Smart Meter Data Problems:
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Recovering Topology From Estimated Y/« \ @;Es PIEEE

* Recovering the topology from Y™ is cast as an anomaly detection problem.

* Our Solution: We have utilized a density based spatial clustering of applications
with noise (DBSCAN) method to extract the topology from Y™.

e DBSCAN can ma rking as anomaly Algorithm 1 Recovering Topology From Y* by Clustering
Initialization: Initialize ¢ «+— 1,5 « 1, 7, &

points that lie alone in low- repeat
density regions. [S1]: Select the ith row of Y*.
o . repeat
A.dvantage' DBSCAN can _ [S2]: Pick y;; and retrieve all direct density-reachable
discover clusters with arbitrary points using .
sha pes. [S3]: Based on 7, if y;; n a core point, a cluster is formed;:
) ] otherwise, update j < j + 1.
* DBSCAN does not require a prior until j = n or no new point can be added to any cluster
specification on the number of [S4]: Update i i+ 1.
until : = n.
clusters.



4 IEEE

Power & Energy Society®

@Fﬁs

Bus Test

-, 69-

-, 37

Estimated Topology for IEEE 13

25

0.6

5 3 3
N -~
8 i 2
F —
. s
P K B
7 e .3
u —
M a3 =
(o))
\O m o
Aol
|
L
4=,
it
&8
7
=
s
— |
=
()
N
= AN EEE
E H N EEEE
4 HE ' EHEN
7z | !\\L HEEN
= B | BN g
m EEEEE BN -
fi HEEEEE B~
. HEEEEN |
HEER W -
mﬂ,\_tﬁ—)l):).l. mw987n0v.“u4vn1”21
= o <Yy ﬂ
S B =)
o g— a p— v
o O S = © O
v = o 9
=
3 L
()
Ll



LAD Parameter Estimation Model \ (epes | @IEEE

K
* The Big-M technique is min_ Z o (9)
exploited to linearize the At RpXpf5 3
ol : k k
bilinear term a,,x;. subjectto 6" = ;7 Vk
—0f< e, Vk
° ' I - 1
We rewrite (8) Wlthout L1 | W’ = [ | R]] > 0, rank{W/} = 1,V
norm operator by introducing U
the auxiliary variables. The Wi = [; ;C(J > 0, rank{W*} = 1,V
SPD relaxation is used to N
tackle the non-convex Z @, =1a, €{01},Vz.
quadratic equalities. =

—M;(1 —a,) <15 — Ax; < M;(1 — @), Vz
e



LS Parameter Estimation Model \ (o#is | d1EEE
 The Big-M technique is

, , , min ; 10
exploited to linearize the PESTINID ST 1 ) (10)
- _ Hj — 41
bilinear term a, x;. subject to > - 1y :
e.
: : : J 12
* We rewrite (8) by introducing R —1 P
the auxiliary variable u;, and 5 < J
. . . . 2
additionally imposing the 5o,
constraints. Xj—1 Xi+1
y) <
Xj 2
e Relaxing the quadratic Z 2
equalities, we obtain a z a,=1,a, € {0,1},Vz.
MISOCP model.

z=1
—M;(1—a,) <15 — A% < M;(1 — a,),Vz
Y A



Exactness of SDP and SOCP Relaxation of IEE\3\7\ fes | HIEEE

Bus Test Feeders

* To quantify the exactness of SDP and SOCP relaxation in (9) and (10), we compute
the ration between the largest two eigenvalues of Wj’" and WJx and the resultant

errors EJT and £, respectively.
37-Bus Test Feeder: SDP Relaxation (top) and SOCP Relaxation (bottom)
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Exactness of SDP and SOCP Relaxation of IEE\1\3\ Ghts
and 69-Bus Test Feeders

$IEEE

13-Bus Test Feeder: SDP Relaxation 13-Bus Test Feeder: SOCP Relaxation
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v The SDP relaxation Is exact on all branches in three cases.




Estimated Line Parameters for IEEE 69-Bus Teé\ @ES‘ $IEEE

Feeder - Summary

SDP-based LAD model:

* For the IEEE 13-bus feeder, the largest relative errors (among all branches) for r; and x; are
3.331x107°% and 3.335X107°%.

* For the IEEE 37-bus feeder, the largest relative errors (among all branches) for 1; and x; are
3.402x107*9% and 3.403x10*%.

* For the IEEE 69-bus feeder, the largest relative errors (among all branches) for r; and x; are
1.444%107*% and 7.061x107°%.

SOCP-based LS model:

* For the IEEE 13-bus feeder, the largest relative errors (among all branches) for r; and x; are 0.256%
and 0.952%.

* For the IEEE 37-bus feeder, the largest relative errors (among all branches) for 7; and x; are 0.251%
and 0.958%.

* For the IEEE 69-bus feeder, the largest relative errors (among all branches) for 7; and x; are 33.95%

J
and 46.81%. But these large errors (= 5%) only occur in a few branches with high R/X ratios

‘17,34,39,45, and 68‘.




