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Early Warning & Early Prevention System
Envisioned approach for secure and stable operation of high RES systems
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a: Stability assessment information b: Suggested instability countermeasure c: N-1 dynamic security information
d: Suggested insecurity countermeasure e: Multiple N-1 steady state snapshots f: N-1 static security information
g: Selected data for visualisation h: Applied wide-area countermeasure
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The ASSRAS Assessment Method - Early Warning
Assessment of Aperiodic Small Signal Stability: Stability Boundary

PSfrag replacements
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The ASSRAS Assessment Method: Assessment Criteria
Assessment of Aperiodic Small Signal Stability

Assessment Criteria:
∣

∣

∣

∣

Zinj · (2 sinφth) + j · Zth

Zth

∣

∣

∣

∣











> 1 Stable operation
= 1 On the stability boundary
< 1 Unstable operation

(1)

Outline of Aperiodic Small Signal Stability Assessment:

foreach System PMU-Snapshot do
foreach Generator j = 1 : K do

Determine the injection impedance Zinj,j seen from Gj ;
Determine the Thevenin impedance Zth,j seen from Gj ;
Apply (1) to assess the generator aperiodic small signal stability;

end
end
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Informative Visualisation
Visualizing Multiple Operating Points in Normalized Impedance Plane
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%∆P

A percentage active power margin from
the OP

{

Zinj,i, Zth,i

}

to the boundary
is given by an algebraic expression



Demonstration of the ASSRAS Method
Early Warning for the 2003 DK-SW Blackout
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Demo I: 2003 Blackout in E-DK and S-SW
Overview

Simulation of the 2003 blackout in E-DK and S-SW was carried out for the purpose of
testing the method on a realistic case

Output used to generate synthetic PMU measurements
Used to test the performance of the method
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Demo I: 2003 Blackout in E-DK and S-SW
Overview

Simulation of the 2003 blackout in E-DK and S-SW was carried out for the purpose of
testing the method on a realistic case

Output used to generate synthetic PMU measurements
Used to test the performance of the method

Simulation Model
Detailed model of E-Denmark combined with a simplified model for the of the nordic system
Size of the extended system 488 nodes and 672 edges

Assessment of 144 generator states in less than 1.0ms
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Demo I: 2003 Blackout in E-DK and S-SW (Results)
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Demo I: 2003 Blackout in E-DK and S-SW (Results)
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Prevention Against Emerging ASSRAS Blackouts
Usefull properties of element-wise stability assessment

Element-wise assessment of a particular mechanism of
instability

Individual assessment of each relevant system element (a
generator or a node)
Focussing on an assessment of one particular stability
mechanism
The system model is reduced such that only factors that
have a significant influence on the stability mechanism are
included
Possibility for assessment times suitable for real-time
operation
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Focussing on an assessment of one particular stability
mechanism
The system model is reduced such that only factors that
have a significant influence on the stability mechanism are
included
Possibility for assessment times suitable for real-time
operation

PSfrag replacements
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Provides both a proximity-to-instability information and the mechanism of instability (where and
what)
ASSRAS: margin to maximum injectable active power

obvious countermeasure to reduce generator’s active power output



Demonstration of the ASSRAS Method
Early Warning & Prevention for the 2003 DK-SW Blackout

(Play Video)
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Test Case: 2003 Blackout in E-DK and S-SW
Summary of results - effect on voltages and messages issued by the EWEP system
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Figure: System response with activated EWEP system.
Two countermeasures are applied which stabi-
lize the system. The grey dashed lines represent
the original system response leading to instabil-
ity.

322s EW: Margin for GA below 0.5%
327s EW: GA below trigger margin
327s EP: GA reduced by 2.8 MW, GC increased by 2.8 MW
335s EW: Margin for GB below 1.0%
351s EW: Margin for GB below 0.5%
358s EW: GB below trigger margin
358s EP: GB reduced by 4.8 MW, GD increased by 4.8 MW

Table: Early warning (EW) messages and early prevention (EP)
countermeasures issued by the EWEP system
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Concluding Remarks - Summary

Overview of DTU’s R&D in methods enabling construction of EWEP systems
The development continues in two branches:

1 Energinet (the Danish TSO) is developing real-time platform that will enable online
demonstration/operation of such solutions (pushing from TRL 7 to TRL 10)

2 Academic research on how to ensure stable and secure operation of offshore energy islands

Example of Early-Warning and Early-Prevention methods:

The ASSRAS Assessment Method (Early Warning) [1, 2, 3]

The ASSRAS Countermeasure Method (Early Prevention) [4]
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Concluding Remarks - Summary

Overview of DTU’s R&D in methods enabling construction of EWEP systems
The development continues in two branches:

1 Energinet (the Danish TSO) is developing real-time platform that will enable online
demonstration/operation of such solutions (pushing from TRL 7 to TRL 10)

2 Academic research on how to ensure stable and secure operation of offshore energy islands

Example of Early-Warning and Early-Prevention methods:

The ASSRAS Assessment Method (Early Warning) [1, 2, 3]

Extremely fast assessment due to algebraically derived criteria and effective algorithms
Assesses 1325 generators in ≈ 10.000 bus system in less than 2ms

provides proximity to, location and the nature of the emerging instability

The ASSRAS Countermeasure Method (Early Prevention) [4]
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Concluding Remarks - Summary

Overview of DTU’s R&D in methods enabling construction of EWEP systems
The development continues in two branches:

1 Energinet (the Danish TSO) is developing real-time platform that will enable online
demonstration/operation of such solutions (pushing from TRL 7 to TRL 10)

2 Academic research on how to ensure stable and secure operation of offshore energy islands

Example of Early-Warning and Early-Prevention methods:

The ASSRAS Assessment Method (Early Warning) [1, 2, 3]

The ASSRAS Countermeasure Method (Early Prevention) [4]

Determines necessary remedial actions against ASSRAS instability (voltage collapse)
Very fast identification - purely algebraic approach
Introduction of a minimum security margin
Stability restoration through power generation re-dispatch
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