

Early Warning and Prevention of System Stability Problems 2023 IEEE PES General Meeting, Orlando

1/12

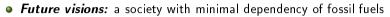
July 19, 2023

Hjörtur Jóhannsson

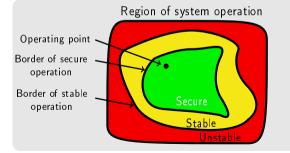
Senior Scientific Consultant Department of Wind and Energy Systems Technical University of Denmark hjjo@dtu.dk

Outline

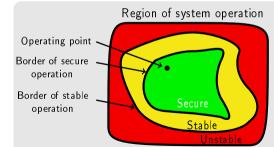
2 Early Warning & Early Prevention System



Inture Outlook and Concluding Remarks


- Future visions: a society with minimal dependency of fossil fuels
 - Requires power production to be mainly based on renewable energy sources (RES)
 - Production becomes subject to prevailing weather conditions (fluctuations) and behind inverters

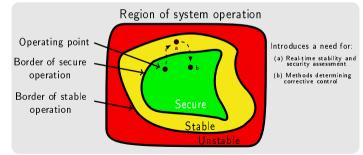
- Requires power production to be mainly based on renewable energy sources (RES)
- Production becomes subject to prevailing weather conditions (fluctuations) and behind inverters
- Are existing approaches for stability and security assessment sufficient for ensuring satisfying operation of such systems?

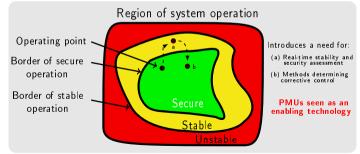

- Future visions: a society with minimal dependency of fossil fuels
 - Requires power production to be mainly based on renewable energy sources (RES)
 - Production becomes subject to prevailing weather conditions (fluctuations) and behind inverters
- Are existing approaches for stability and security assessment sufficient for ensuring satisfying operation of such systems?

IFFF

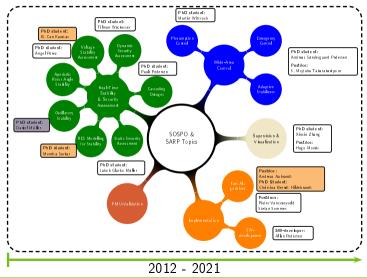
2/12

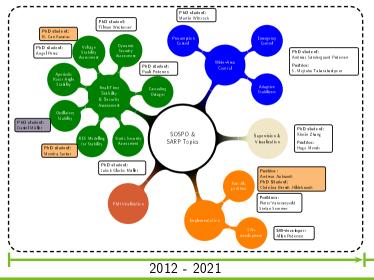
- Future visions: a society with minimal dependency of fossil fuels
 - Requires power production to be mainly based on renewable energy sources (RES)
 - Production becomes subject to prevailing weather conditions (fluctuations) and behind inverters
- Are existing approaches for stability and security assessment sufficient for ensuring satisfying operation of such systems?
- Historically, security assessment is based on off-line analysis
 - Time consuming \Rightarrow Insufficient


- Future visions: a society with minimal dependency of fossil fuels
 - Requires power production to be mainly based on renewable energy sources (RES)
 - Production becomes subject to prevailing weather conditions (fluctuations) and behind inverters
- Are existing approaches for stability and security assessment sufficient for ensuring satisfying operation of such systems?
- Historically, security assessment is based on off-line analysis
 - Time consuming \Rightarrow Insufficient



- Future visions: a society with minimal dependency of fossil fuels
 - Requires power production to be mainly based on renewable energy sources (RES)
 - Production becomes subject to prevailing weather conditions (fluctuations) and behind inverters
- Are existing approaches for stability and security assessment sufficient for ensuring satisfying operation of such systems?
- Historically, security assessment is based on off-line analysis
 - Time consuming \Rightarrow Insufficient


- Future visions: a society with minimal dependency of fossil fuels
 - Requires power production to be mainly based on renewable energy sources (RES)
 - Production becomes subject to prevailing weather conditions (fluctuations) and behind inverters
- Are existing approaches for stability and security assessment sufficient for ensuring satisfying operation of such systems?
- Historically, security assessment is based on off-line analysis
 - Time consuming \Rightarrow Insufficient


DTU's major R&D topics addressing secure system operation

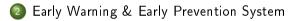
2021 - ??

DTU's major R&D topics addressing secure system operation

3/12 **ØIEEE** PES Power & Energy Society* DTU's major R&D topics addressing secure system operation PhD stude nt: Martin Wittrock PhD student: **ENERGINET** Tilman Weckesser PhD stude nt: B. Can Karatas Pros um ptio Control Emergency Control PhD student: PhD stude nt: Angel Perez And reas Stinders aard Pedersen Real-Time Online Platform Wide-Area Portdor PhD student: 5. Moitaba Tabatabaeinour Paul Pedersen (towards TRL 8-10) Rotor Angle Adaptive Real-Time Stabilizen Sta bility Occillatory Daniel Müller PhD stude at: SOSPO & Xinsin Zhane Supervision & SARP Topics Visua lizat is a Postdoc: PhD student: Hugo Morais Momita Sarkar PhD student: Jakob Glarbo Mitller Postdoc Andreas Aabrandt PhD Student Christina Berndt Hildebrandt Postdors: Piet or Vanc mesuald Stefan Sommer SW-developer: Allan Pedersen 2012 - 2021 2021 - ??

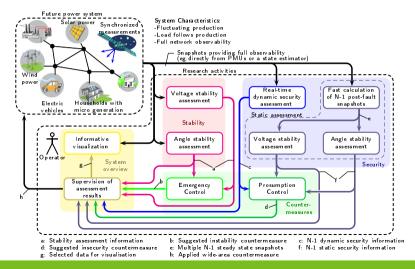
ØIEEE PES Power & Energy Society* DTU's major R&D topics addressing secure system operation PhD stude nt: Martin Wittrock PhD student: **ENERGINET** Tilman Weckesser PhD stude nt: B. Can Karatas Pros um ptio Control Emergency Control PhD students PhD stude nt: Angel Perez And reas Stinders aard Pedersen Real-Time Online Platform Wide-Area Portdor PhD student: Control 5. Moitaba Tabatabaeinour Paul Pedersen (towards TRL 8-10) Adaptive Real-Time Stabilizen Sta bility Occillatory Daniel Müller PhD stude at: SOSPO & Xinsin Zhane Supervision & SARP Topics Visua lizat is a Postdoc: Hugo Morais Wind Power Plants Momita Sarkar OWPPs: PhD student: Energy Jakob Glarbo Mitller Postdoc -----Andreas Aabrandt PhD Student Christina Berndt Hildebrandt Postdors: Piet or Vanc mesuald Stefan Sommer Offshore Energy Islands Stable and secure operation SW-developer: Albn Pederen

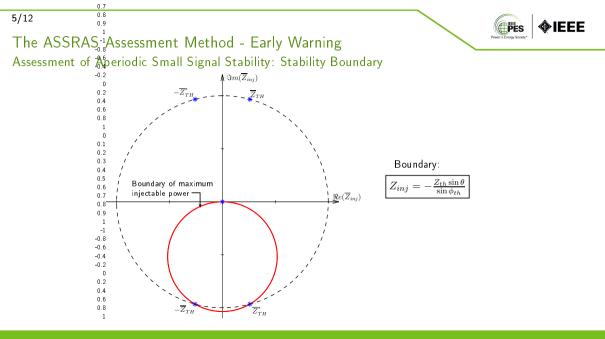
2021 - ??


2012 - 2021

3/12

$\mathsf{Outline}$





Early Warning & Early Prevention System

Envisioned approach for secure and stable operation of high RES systems

(1)

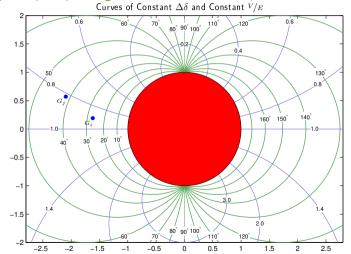
The ASSRAS Assessment Method: Assessment Criteria Assessment of Aperiodic Small Signal Stability

Assessment Criteria:

$$\frac{\overline{Z}_{inj} \cdot (2\sin\phi_{th}) + j \cdot Z_{th}}{Z_{th}} \bigg|$$

Stable operation

= 1 On the stability boundary < 1 Unstable operation

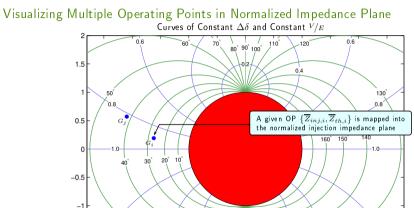

Outline of Aperiodic Small Signal Stability Assessment:

```
foreach System PMU-Snapshot do
    foreach Generator j = 1 : K do
         Determine the injection impedance \overline{Z}_{ini,i} seen from G_i:
         Determine the Thevenin impedance \overline{Z}_{th,i} seen from G_i;
         Apply (1) to assess the generator aperiodic small signal stability;
    end
end
```


Informative Visualisation

Visualizing Multiple Operating Points in Normalized Impedance Plane

Informative Visualisation


-1.5

-2-2-5

-2

-1.5

-1

3.0

/110

0.5

80° 90° 100°

0

70°

-0.5

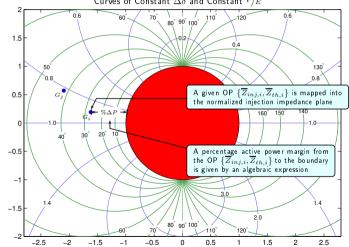
2.0

1.5

120°.

1

1.4


2.5

2

Informative Visualisation

Visualizing Multiple Operating Points in Normalized Impedance Plane Curves of Constant $\Delta \delta$ and Constant V/E

Demonstration of the ASSRAS Method Early Warning for the 2003 DK-SW Blackout

Demo I: 2003 Blackout in E-DK and S-SW Overview

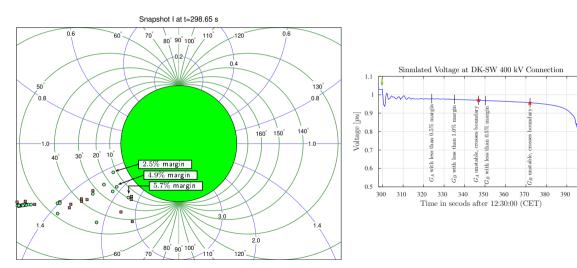
- Simulation of the 2003 blackout in E-DK and S-SW was carried out for the purpose of testing the method on a realistic case
 - Output used to generate synthetic PMU measurements
 - Used to test the performance of the method

PES Pour 3 Error Score"

Demo I: 2003 Blackout in E-DK and S-SW Overview

- Simulation of the 2003 blackout in E-DK and S-SW was carried out for the purpose of testing the method on a realistic case
 - Output used to generate synthetic PMU measurements
 - Used to test the performance of the method
- Simulation Model
 - Detailed model of E-Denmark combined with a simplified model for the of the nordic system
 - Size of the extended system 488 nodes and 672 edges

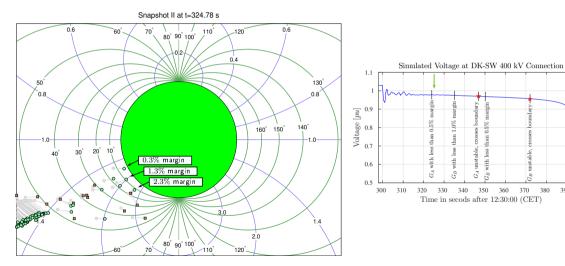
Demo I: 2003 Blackout in E-DK and S-SW Overview

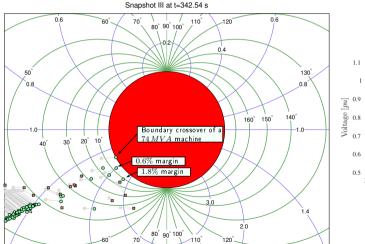

- Simulation of the 2003 blackout in E-DK and S-SW was carried out for the purpose of testing the method on a realistic case
 - Output used to generate synthetic PMU measurements
 - Used to test the performance of the method
- Simulation Model
 - Detailed model of E-Denmark combined with a simplified model for the of the nordic system

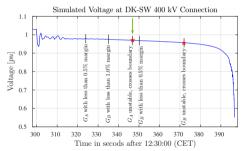
IEEE

Smann & Ernarry Sociated

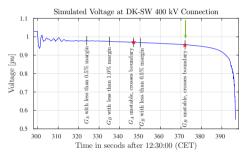
- Size of the extended system 488 nodes and 672 edges
- $\bullet\,$ Assessment of 144 generator states in less than 1.0ms

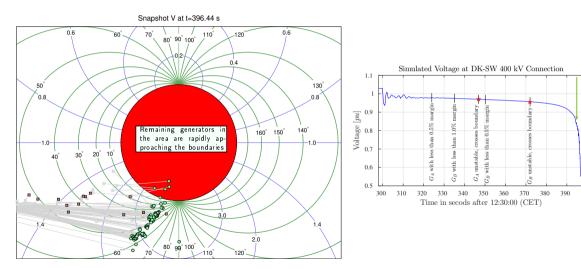


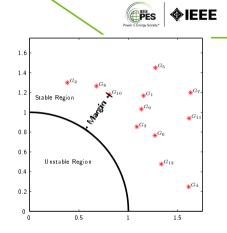


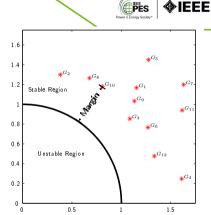

G_B

360 370 380 390

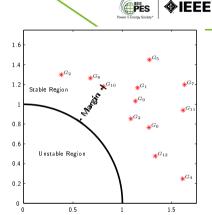







Prevention Against Emerging ASSRAS Blackouts Usefull properties of element-wise stability assessment

- Element-wise assessment of a particular mechanism of instability
 - Individual assessment of each relevant system element (a generator or a node)
 - Focussing on an assessment of one particular stability mechanism
 - The system model is reduced such that only factors that have a significant influence on the stability mechanism are included
 - Possibility for assessment times suitable for real-time operation


Prevention Against Emerging ASSRAS Blackouts Usefull properties of element-wise stability assessment

- Element-wise assessment of a particular mechanism of instability
 - Individual assessment of each relevant system element (a generator or a node)
 - Focussing on an assessment of one particular stability mechanism
 - The system model is reduced such that only factors that have a significant influence on the stability mechanism are included
 - Possibility for assessment times suitable for real-time operation
 - Provides both a proximity-to-instability information and the mechanism of instability (where and what)

Prevention Against Emerging ASSRAS Blackouts Usefull properties of element-wise stability assessment

- Element-wise assessment of a particular mechanism of instability
 - Individual assessment of each relevant system element (a generator or a node)
 - Focussing on an assessment of one particular stability mechanism
 - The system model is reduced such that only factors that have a significant influence on the stability mechanism are included
 - Possibility for assessment times suitable for real-time operation
 - Provides both a proximity-to-instability information and the mechanism of instability (where and what)
 - ASSRAS: margin to maximum injectable active power
 - obvious countermeasure to reduce generator's active power output

Demonstration of the ASSRAS Method Early Warning & Prevention for the 2003 DK-SW Blackout

Test Case: 2003 Blackout in E-DK and S-SW

Power & Energy Society*

Summary of results - effect on voltages and messages issued by the EWEP system

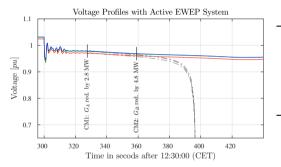


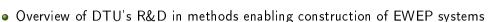
Figure: System response with activated EWEP system. Two countermeasures are applied which stabilize the system. The grey dashed lines represent the original system response leading to instability.

322s	EW: Margin for GA below 0.5%
327s	EW: G_A below trigger margin
327s	EP: G_A reduced by 2.8 MW, G_C increased by 2.8 MW
335s	EW: Margin for G_B below 1.0%
351s	EW: Margin for G_B below 0.5%
358s	EW: G_B below trigger margin
358s	EP: G_B reduced by 4.8 MW, G_D increased by 4.8 MW

 Figure:
 System response with activated EWEP system.
 Table:
 Early warning (EW) messages and early prevention (EP)

 Two countermeasures are applied which stabi countermeasures issued by the EWEP system

Outline


Background & Overview

2 Early Warning & Early Prevention System

Inture Outlook and Concluding Remarks

Concluding Remarks - Summary

- The development continues in two branches:
 - Energinet (the Danish TSO) is developing real-time platform that will enable online demonstration/operation of such solutions (pushing from TRL 7 to TRL 10)
 - ② Academic research on how to ensure stable and secure operation of offshore energy islands

l IFFF

• Example of Early-Warning and Early-Prevention methods:

The ASSRAS Assessment Method (Early Warning) [1, 2, 3]

The ASSRAS Countermeasure Method (Early Prevention) [4]

Concluding Remarks - Summary

- Overview of DTU's R&D in methods enabling construction of EWEP systems
- The development continues in two branches:
 - Energinet (the Danish TSO) is developing real-time platform that will enable online demonstration/operation of such solutions (pushing from TRL 7 to TRL 10)
 - **@** Academic research on how to ensure stable and secure operation of offshore energy islands
- Example of Early-Warning and Early-Prevention methods:

The ASSRAS Assessment Method (Early Warning) [1, 2, 3]

- Extremely fast assessment due to algebraically derived criteria and effective algorithms
 - Assesses $1325~{\rm generators}$ in $\approx 10.000~{\rm bus}$ system in less than 2ms
- provides proximity to, location and the nature of the emerging instability

The ASSRAS Countermeasure Method (Early Prevention) [4]

Concluding Remarks - Summary

- Overview of DTU's R&D in methods enabling construction of EWEP systems
- The development continues in two branches:
 - Energinet (the Danish TSO) is developing real-time platform that will enable online demonstration/operation of such solutions (pushing from TRL 7 to TRL 10)
 - Q Academic research on how to ensure stable and secure operation of offshore energy islands
- Example of Early-Warning and Early-Prevention methods:

The ASSRAS Assessment Method (Early Warning) [1, 2, 3]

The ASSRAS Countermeasure Method (Early Prevention) [4]

- Determines necessary remedial actions against ASSRAS instability (voltage collapse)
 - Very fast identification purely algebraic approach
 - Introduction of a minimum security margin
 - Stability restoration through power generation re-dispatch

References

- H. Jóhannsson, A. H. Nielsen, and J. Østergaard. Identification of Critical Transmission Limits in Injection Impedance Plane. International Journal on Electrical Power and Energy, 43(1), 2012.
- [2] H. Jóhannsson, A. H. Nielsen, and J. Østergaard. Wide-Area Assessment of Aperiodic Small Signal Rotor Angle Stability in Real-Time. IEEE Transactions on Power Systems, 2013.
- [3] S Sommer and H. Jóhannsson. Real-Time Thevenin Impedance Computations. 2013 IEEE ISGT conference, Washington D.C., USA, Feb. 2013.
- [4] J.G.T. Weckesser, H.Jóhannsson, and J. Østergaard. Real-Time Remedial Action against Aperiodic Small Signal Rotor Angle Instability. IEEE Transactions on Power Systems, 2016.
- [5] C.H.L Jørgensen, J.G.Møller, S. Sommer and H.Jóhannsson. A Memory-Efficient Parallelizable Method for Computation of Thévenin Equivalents used in Real-Time Stability Assessment. IEEE Transactions on Power Systems, 2019.

IEEE

Onamy & Ernerry Cociated