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© Future Outlook and Concluding Remarks
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Secure Operation of Sustainable Electric Power Systems

@ Future visions: a society with minimal dependency of fossil fuels

@ Requires power production to be mainly based on renewable energy sources (RES)
@ Production becomes subject to prevailing weather conditions (fluctuations) and behind inverters
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@ Are existing approaches for stability
and security assessment sufficient
for ensuring satisfying operation of
such systems?

Operating point Introduces a need for:

(a) Real-time stability and
security assessment

Border of secure

operation (b) Methods determining

corrective control

Border of stable

@ Historically, security assessment is .
operation

based on off-line analysis
e Time consuming = Insufficient

Secure PMUs seen as an
enabling technology
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Early Warning & Early Prevention System

Envisioned approach for secure and stable operation of high RES systems
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The ASSRAS Assessment Method - Early Warning
Assessment of Aperiodic Small Signal Stability: Stability Boundary
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Assessment of Aperiodic Small Signal Stability

Assessment Criteria:

>
=1 On the stability boundary (1)
<1 Unstable operation

table operation

‘Zinj - (2sin ¢sn) + 5 - Zin
Zinh

Outline of Aperiodic Small Signal Stability Assessment:

foreach System PMU-Snapshot do
foreach Generator j = 1: K do
Determine the injection impedance Z.n;,; seen from Gj;
Determine the Thevenin impedance Z, ; seen from G;
Apply (1) to assess the generator aperiodic small signal stability;
end
end
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Visualizing Multiple Operating Points in Normalized Impedance Plane
Curves of Constant Ad and Constant V/E
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Visualizing Multiple Operating Points in Normalized Impedance Plane
Curves of Constant Ad and Constant V/E
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Visualizing Multiple Operating Points in Normalized Impedance Plane
Curves of Constant Ad and Constant V/E
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Overview

@ Simulation of the 2003 blackout in E-DK and S-SW was carried out for the purpose of
testing the method on a realistic case

o Output used to generate synthetic PMU measurements
o Used to test the performance of the method
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Overview

@ Simulation of the 2003 blackout in E-DK and S-SW was carried out for the purpose of
testing the method on a realistic case

o Output used to generate synthetic PMU measurements
o Used to test the performance of the method

@ Simulation Model
o Detailed model of E-Denmark combined with a simplified model for the of the nordic system
o Size of the extended system 488 nodes and 672 edges

o Assessment of 144 generator states in less than 1.0ms
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Snapshot | at t=298.65 s
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Demo |: 2003 Blackout in E-DK and S-SW (Results)

Snapshot Il at t=324.78 s
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Snapshot Il at t=342.54 s
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Snapshot IV at t=369.85 s
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Snapshot V at t=396.44 s
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Prevention Against Emerging ASSRAS Blackouts

Usefull properties of element-wise stability assessment

@ Element-wise assessment of a particular mechanism of

instability

o Individual assessment of each relevant system element (a

generator or a node)

@ Focussing on an assessment of one particular stability

mechanism

@ The system model is reduced such that only factors that
have a significant influence on the stability mechanism are

included

@ Possibility for assessment times suitable for real-time

operation
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Usefull properties of element-wise stability assessment 16
*9s
) ) ) 1.4
@ Element-wise assessment of a particular mechanism of *% .
instability 121 Stable Region :“G"’ *C1 *
.. o %G
o Individual assessment of each relevant system element (a ! 5 %O
generator or a node) 08 * oo
@ Focussing on an assessment of one particular stability
mechanism 0.6 _
@ The system model is reduced such that only factors that o4 Unstable Region Hz
have a significant influence on the stability mechanism are o
included 0.2 *
@ Possibility for assessment times suitable for real-time
operation 00 0.5 1 1.5
@ Provides both a proximity-to-instability information and the mechanism of instability (where and
what)
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Usefull properties of element-wise stability assessment 16
1.4 *90
@ Element-wise assessment of a particular mechanism of *% .
instability 121 Stable Region :“G"’ *C1 *
. & *5
o Individual assessment of each relevant system element (a ! 5 %O
generator or a node) 08 * oo
@ Focussing on an assessment of one particular stability
mechanism 0.6 _
@ The system model is reduced such that only factors that o4 Unstable Region Hz
have a significant influence on the stability mechanism are o
included 0.2 *
@ Possibility for assessment times suitable for real-time
operation % 0.5 1 15
@ Provides both a proximity-to-instability information and the mechanism of instability (where and
what)

@ ASSRAS: margin to maximum injectable active power
@ obvious countermeasure to reduce generator's active power output
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Test Case: 2003 Blackout in E-DK and S-SW

Summary of results - effect on voltages and messages issued by the EWEP system

=
i
§

Voltage Profiles with Active EWEP System

1.1 T
322s EW: Margin for GA below 0.5%
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Time in secods after 12:30:00 (CET)

Figure: System response with activated EWEP system. Table: Early warning (EW) messages and early prevention (EP)
Two countermeasures are applied which stabi- countermeasures issued by the EWEP system
lize the system. The grey dashed lines represent
the original system response leading to instabil-

ity.
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o Overview of DTU’s R&D in methods enabling construction of EWEP systems
o The development continues in two branches:

@ Energinet (the Danish TSO) is developing real-time platform that will enable online
demonstration/operation of such solutions (pushing from TRL 7 to TRL 10)
@ Academic research on how to ensure stable and secure operation of offshore energy islands

e Example of Early-Warning and Early-Prevention methods:

The ASSRAS Assessment Method (Early Warning) [1, 2, 3]

The ASSRAS Countermeasure Method (Early Prevention) [4]
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o Overview of DTU’s R&D in methods enabling construction of EWEP systems
@ The development continues in two branches:

@ Energinet (the Danish TSO) is developing real-time platform that will enable online
demonstration/operation of such solutions (pushing from TRL 7 to TRL 10)
@ Academic research on how to ensure stable and secure operation of offshore energy islands

o Example of Early-Warning and Early-Prevention methods:

The ASSRAS Assessment Method (Early Warning) [1, 2, 3]

o Extremely fast assessment due to algebraically derived criteria and effective algorithms
o Assesses 1325 generators in ~ 10.000 bus system in less than 2ms

@ provides proximity to, location and the nature of the emerging instability

The ASSRAS Countermeasure Method (Early Prevention) [4]
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o Overview of DTU’s R&D in methods enabling construction of EWEP systems
o The development continues in two branches:
@ Energinet (the Danish TSO) is developing real-time platform that will enable online
demonstration/operation of such solutions (pushing from TRL 7 to TRL 10)
@ Academic research on how to ensure stable and secure operation of offshore energy islands

o Example of Early-Warning and Early-Prevention methods:

The ASSRAS Assessment Method (Early Warning) [1, 2, 3]

The ASSRAS Countermeasure Method (Early Prevention) [4]

o Determines necessary remedial actions against ASSRAS instability (voltage collapse)
o Very fast identification - purely algebraic approach
o Introduction of a minimum security margin
o Stability restoration through power generation re-dispatch
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