

ML-Assistant For Human Operators in Processing Power System Alarm Data

Ricardo Bessa

ricardo.j.bessa@inesctec.pt

Motivation and Challenges

Fig. ref.: Kirschen, D. S., Wollenberg, B. F. (1992). Intelligent alarm processing in power systems. Proceedings of the IEEE, 80(5), 663-672

Challenges

0000000

Data Representation

Raw SCADA Data from a DSO

Fig. ref.: http://www.socialmediatoday.com/technology-data/2015-04-04/big-data-really-dead

evdate	evdesc
2014-01-02 06:33:14.000	SE SAO JORGE P332 SAO MAMEDE MAX I> INST ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P330 TRANSFORMADOR2 MAX I> INST UP1 ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P330 TRANSFORMADOR2 MIN U< INST ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P330 TRANSFORMADOR2 MIN U<< INST ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P502 TRANSFORMADOR2 MAX I> INST UP1 ARRANQUE
2014-01-02 06:33:13.000	SE SAO JORGE P502 TRANSFORMADOR2 MAX I> INST UP2 - DIF ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P332 SAO MAMEDE MAX I>>> INST ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P332 SAO MAMEDE MAX I>>> TEMP DISPARO
2014-01-02 06:33:14.000	SE SAO JORGE P332 SAO MAMEDE PROT DEFEITO FASE-FASE DISPARO
2014-01-02 06:33:24.000	SE SAO JORGE P332 SAO MAMEDE SUPERVISAO CIRCUIT DESL ALARME
2014-01-02 06:33:14.000	SE SAO JORGE P330 TRANSFORMADOR2 NORMALIZACAO TENSAO+FREQ INACTIVO
2014-01-02 06:33:14.000	SE SAO JORGE P332 SAO MAMEDE DISJUNTOR DESLIGADO
2014-01-02 06:33:14.000	SE SAO JORGE P332 SAO MAMEDE PROT TERRAS RESIST INST ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P326 MIRA D'AIRE MAX I>> INST ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P326 MIRA D'AIRE PROT TERRAS RESIST INST ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P329 TSA+REACTANCIA2 MAX Io> DTR INST ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P329 TSA+REACTANCIA2 MAX Io>>DTR INST ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P332 SAO MAMEDE MAX I>>> INST NORMAL
2014-01-02 06:33:14.000	SE SAO JORGE P326 MIRA D'AIRE MAX I>>> INST ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P326 MIRA D'AIRE MAX I> INST ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P328 PATAIAS PROT TERRAS RESIST INST ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P329 TSA+REACTANCIA2 MAX Io>>>INST PHB ARRANQUE
2014-01-02 06:33:14.000	SE SAO JORGE P332 SAO MAMEDE MAX I> INST NORMAL
2014-01-02 06:33:14.000	SE SAO JORGE P332 SAO MAMEDE MAX I>> INST NORMAL
2014-01-02 06:33:14.000	SE SAO JORGE P332 SAO MAMEDE PROT DEFEITO FASE-FASE NORMAL
2014-01-02 06:33:14.000	SE SAO JORGE P332 SAO MAMEDE PROT TERRAS RESIST INST NORMAL
2014-01-02 06:33:14.000	SE SAO JORGE P332 SAO MAMEDE MAX I>>> TEMP NORMAL
2014-01-02 06:33:14.000	SE SAO JORGE P328 PATAIAS PROT TERRAS RESIST INST NORMAL
2014-01-02 06:33:14.000	SE SAO JORGE P326 MIRA D'AIRE MAX I>>> TEMP DISPARO
2014-01-02 06:33:14.000	SE SAO JORGE P326 MIRA D'AIRE PROT DEFEITO FASE-FASE DISPARO
2014-01-02 06:33:14.000	SE SAO JORGE P509 BARRAMENTO2 TENSAO BARR 56.386 KV Baixo
2014-01-02 06:33:14.000	SE SAO JORGE P329 TSA+REACTANCIA2 MAX Io>>>INST PHB NORMAL
2014-01-02 06:33:14.000	SE SAO JORGE P326 MIRA D'AIRE DISJUNTOR DESLIGADO

IEEE

PES

Power & Energy Society*

Source: E-REDES SCADA Alarm event log data (a snapshot for less than a second)

Reference: J.R. Andrade, R.J. Bessa, et al., "Data-driven anomaly detection and event log profiling of SCADA alarms," IEEE Access, vol. 10, pp. 73758-73773, 2022.

Data Representation

Pros:

- captures relations between sequence tags

Cons:

- time-consuming (parameter tunning needed)
- high computational effort
- variable output length

Reference: J.R. Andrade, R.J. Bessa, et al., "Data-driven anomaly detection and event log profiling of SCADA alarms," IEEE Access, vol. 10, pp. 73758-73773, 2022.

Reference: V. Campos, O. Klyagina, J.R. Andrade, R.J. Bessa, C. Gouveia, "ML-Assistant for human operators to solve and classify fault occurrences in electrical grids," under review, 2023.

0000000

Example of Use Cases

UC1: Identification of Similar Events / Abnormal Protection Behaviour

Profile the "normal" protection behavior within the subset of **contexts for the same fault type** using data from all substations

Detect missing "common" protection logs (logs frequent in historical contexts but not present in current context)

Detect "uncommon" and "rare" protection logs (logs present in current context and rarely detected in similar historical contexts)

Reference: J.R. Andrade, R.J. Bessa, et al., "Data-driven anomaly detection and event log profiling of SCADA alarms," IEEE Access, vol. 10, pp. 73758-73773, 2022.

UC2: Inference of the next operator commands

Occurrence

- 1. Fault in line segment between Automatic Circuit Reclosers (ACR) 2 and 3 protection equipment's
- 2. Circuit breaker opening for Primary Substation 1 and Primary Substation 2

Reference: V. Campos, R.J. Bessa, et al., "ML-assistant for human operators to solve faults and classify events complexity in electrical grids," MEDPOWER 2022.

UC2: Inference of the next operator commands

Occurrence

- 1. Fault in line segment between ACR2 and ACR3 protection equipment's
- 2. Circuit breaker opening for Primary Substation 1 and Primary Substation 2
- 3. Isolation of affected segment of MV Line1 by leaving ACR2 and ACR3 in OPEN state
- 4. Service was completely restored in MV Line2 by closing the circuit breaker and all the ACRs throughout the line

Concluding Remarks

- Alarm data has been undermined...
 - ...in value for system operation and event analysis, but also in human-computer interaction
- Data scarcity is a challenge: poor performance of data-intensive methods (deep learning)
- The potential of use cases for alarm data is high. Other examples explored at INESC TEC:
 - Classify type occurrences (simple ones can be replaced by automation)
 - Event log profiling and segmentation
 - Improve fault cause classification

Acknowledgments

Ricardo Andrade, Vasco Campos, Olga Klyagina INESC TEC