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Background and Challenges

 Background

 In the past decade, the global EV market has been growing 
exponentially.

 To support continued penetration of EVs, it is critical to 
develop smart charging stations that could satisfy the 
charging needs in a cost-effective manner.

 Challenges

 How to determine the optimal charging powers?

 Stochastic arrival/departure of EVs and varying electricity prices

 How to allocate the chargers if there are more EVs than 
chargers?

 Not every parking spot has a charger, varying dwelling time

 How to reduce demand charge?



Literature Review: Charging Scheduling
 Model-based methods

 Multi-stage stochastic programming [Kim 2016] [Wang 2018]; Genetic algorithm [Domínguez-Navarro 2019]

 Rely on sophisticated designs tailored for specific scenarios; “Curse of dimensionality”

 Learning-based methods (for a single EV)

 Tabular Q [Dimitrov, 2014]; Kernel averaging regression functions [Chiș 2016]

 Deep neural networks [Wan 2018]; Focus on the scheduling of a single EV.

 Learning-based methods (for multiple EVs)

 More challenging: dimension of the state space varies with the stochastic arrival of EVs

 Learn a collective EV fleet charging strategy [Vandael 2015]

 Use feature functions to represent the entire station [Wang 2019] or collected features in state vector [Da 
Silva 2019] [Tuchnitz 2021]

 Research Gaps

 Demand charge, vehicle-grid integration (only in single EV studies), waiting area.



Problem Formulation

 Consider a charging station with 𝑁 parking spots, among which 𝑁𝑐 are charging 
spots and 𝑁𝑤 are waiting spots.

 The total profit of a charging station 𝑍 consists of three components

𝑍 = 𝐵 − 𝐶𝑝 − 𝐶𝑙

𝐵: Net revenue from charging and discharging EVs

𝐶𝑝: Penalty if not satisfy EV customers’ energy demand upon departure

𝐶𝑙: Demand charge.



Problem Formulation - Profit

 Suppose the charging power for the 𝑖th EV at time 𝑡 is 𝑎𝑖𝑡.

 If 𝑎𝑖𝑡 ≥ 0, the charging station receives 𝑝𝑡
𝑐 and pays 𝑝𝑡

𝑒 (per kWh)

 If 𝑎𝑖𝑡 < 0, the charging station pays 𝑝𝑡
𝑑 and receives 𝑝𝑡

𝑒 (per kWh)

 The net revenue 𝐵 = σ𝑖∈𝐼σ𝑡∈𝑇𝑚𝑡 𝑎𝑖𝑡 ∆𝑡, where

𝑚𝑡 = ൝
𝑝𝑡
𝑐 − 𝑝𝑡

𝑒 if 𝑎𝑖𝑡 ≥ 0

𝑝𝑡
𝑒 − 𝑝𝑡

𝑑 if 𝑎𝑖𝑡 < 0



Problem Formulation - Penalty

 When an EV leaves without being sufficiently charged, a penalty will be 
imposed to the charging station to compensate the customer.

 Such a penalty shall reflect the gap between the final energy level 𝑒𝑖
𝑓𝑛𝑙

and the 

target energy level  𝑒𝑖
𝑡𝑔𝑡

:

𝑐𝑖
𝑝
= 𝜇 𝑒𝑖

𝑡𝑔𝑡
− 𝑒𝑖

𝑓𝑛𝑙
+

 The total penalty for a charging station is the sum of 𝑐𝑖
𝑝

over all EVs:

𝐶𝑝 =෍
𝑖∈𝐼
𝑐𝑖
𝑝



Problem Formulation – Demand Charge

 Suppose the set of time-of-use periods to be 𝐻, and ℎ ∈ 𝐻 is one of the time-
of-use periods.

 𝑝ℎ
𝑙 is the price of each kW of peak demand in time-of-use period ℎ.

 The demand charge is

𝐶𝑙 =
𝑇

𝑇𝐵
෍

ℎ∈𝐻
𝑝ℎ
𝑙 ∙ 𝐿ℎ

+

𝐿ℎ = max
𝑡∈𝑇ℎ

෍
𝑖∈𝐼
𝑎𝑖𝑡



Problem Formulation - Summary

 The charging station scheduling problem is formulated as follows

 Maximizing charging station total profit

 Subject to

 Power constraints, space constraints, energy constraints

 If all future information of EVs are known, an oracle is able to obtain the global optimal 
solution of the charging station scheduling problem.

 In practice, it is impossible to have perfect predictions of arriving EVs.

 Instead, model predictive control methods are often developed to handle similar 
problems.

 However, the effectiveness  of MPC-based algorithm relies on accurate prediction of 
future EV arrivals and does not scale well with the size of the problem.



Overview of Proposed Framework: CADE

 Centralized allocation: Determine whether an EV should be allocated to the charging or waiting area

 Decentralized execution: Each individual charger makes its own decision on output power



Decentralized Execution – MDP Formulation

 State Space

 For a charger 𝑗, we define its state of environment at time 𝑡 as:

𝑠𝑗𝑡 = {𝛿𝑗𝑡, 𝑡, 𝑡𝑗
𝑟 , 𝑒𝑗𝑡, 𝑒𝑗𝑡

𝑟 , 𝑁𝑡
𝐸𝑉,𝑤 , 𝐸𝑡

𝑟,𝑤, ෨ℎ𝑡 , 𝐿ℎ𝑡}

 𝛿𝑗𝑡 ∈ 0,1 indicates if there is an EV connected to charger 𝑗.

 𝑡𝑗
𝑟 = 𝑡𝑗

𝑑 − 𝑡 is the remaining dwelling time of the EV connected to the charger.

 𝑒𝑗𝑡 denotes the current energy level of the EV battery.

 𝑒𝑗𝑡
𝑟 = 𝑒𝑗

𝑡𝑔𝑡
− 𝑒𝑗𝑡 is the remaining energy to be charged for  the EV battery.

 𝑁𝑡
𝐸𝑉,𝑤 is the total number of EVs in the waiting area at time 𝑡.

 𝐸𝑡
𝑟,𝑤 is the sum of remaining energy to be charged for all EVs in the waiting area.

 ෨ℎ𝑡 is a one-hot encoded vector indicting the current time-of-use period.



MDP Formulation – Action Space

 Action

 The action for a charge 𝑗 at time 𝑡 is its output power 𝑎𝑗𝑡.

 The upper bound of the power 𝑎𝑗𝑡
𝑢𝑝𝑝𝑒𝑟

= min 𝑎𝑚𝑎𝑥 ,
𝑒𝑚𝑎𝑥−𝑒𝑗𝑡

∆𝑡

 The lower bound of the power 𝑎𝑗𝑡
𝑙𝑜𝑤𝑒𝑟 = min 𝑎𝑚𝑖𝑛,

𝑒𝑚𝑖𝑛−𝑒𝑗𝑡

∆𝑡

 The feasible action space 𝐴𝑗𝑡 = 𝑎𝑗𝑡
𝑙𝑜𝑤𝑒𝑟 , … , 𝑎𝑗𝑡

𝑢𝑝𝑝𝑒𝑟
with uniform difference 

∆𝑎 between adjacent actions



MDP Formulation – Reward

 The reward of a charger: 𝑟𝑗𝑡 = 𝑟𝑗𝑡
𝑏 + 𝑟𝑗𝑡

𝑝
+ 𝑟𝑗𝑡

𝑙

 Net revenue: 𝑟𝑗𝑡
𝑏 = 𝑚𝑡 𝑎𝑗𝑡 ∆𝑡

 Penalty: 𝑟𝑗𝑡
𝑝
= − 𝑐𝑗𝑡

𝑝
+ 𝑐𝑗𝑡

𝑝,𝑤

 From charging area:𝑐𝑗𝑡
𝑝
= ቐ𝜇 𝑒𝑗

𝑡𝑔𝑡
− 𝑒𝑗𝑡

+
if 𝑡𝑟 = 0

0 if 𝑡𝑟 > 0

 From waiting area: 𝑐𝑗𝑡
𝑝,𝑤

=
𝑎𝑚𝑎𝑥−𝑎𝑗𝑡

σ𝑗∈𝐽 𝑎𝑚𝑎𝑥−𝑎𝑗𝑡
𝑅𝑡
𝑝,𝑤

 Demand charge: 𝑟𝑗𝑡
𝑙 =

𝑎𝑗𝑡

σ𝑗∈𝐽 𝑎𝑗𝑡
𝑅𝑡
𝑙



Decentralized Execution – Policy Improvement

 Action Value Function

 The action value functions of the chargers will be 
learned through a deep Q learning (DQN) algorithm

 Operation experiences are shared among all chargers

 Use a deep neural network 𝑄(𝑠, 𝑎; 𝜃) to approximate 
the action value function and a second one 
𝑄(𝑠, 𝑎; 𝜃−) to stabilized the learning process

 The parameters are updated by stochastic gradient descent on the loss function:

𝐿 𝜃 = 𝔼 𝑟 + 𝛾(1 − 𝑑)max
𝑎′𝜖𝐴

𝑄 𝑠′, 𝑎′; 𝜃− − 𝑄(𝑠, 𝑎; 𝜃)
2

 The optimal deterministic policy chooses action 𝑎∗ = 𝑎𝑟𝑔max
𝑎∈𝐴

𝑄∗(𝑠, 𝑎; 𝜃)



Centralized Execution

 Connect the 𝑘th EV to a charger will create an action value 𝑞𝑘
𝑐 = max

𝑎
𝑄(𝑠 𝛼𝑘 = 1 , 𝑎).

 When an EV is parked in a waiting spot, it is equivalent to be connected to a charger with zero 
power output and create an action value 𝑞𝑘

𝑤 = 𝑄 𝑠 𝛼𝑘 = 1 , 𝑎 = 0 .

 Action values represent expected returns.

 The allocation problem can be solved by finding the EV allocation that maximizes the 
summation of the action values:

max
𝛼𝑘

෍
𝑘=1

𝑁𝑡
𝐸𝑉

𝛼𝑘𝑞𝑘
𝑐 + (1 − 𝛼𝑘)𝑞𝑘

𝑤

Subject to:                                                σ𝑘=1
𝑁𝑡
𝐸𝑉

𝛼𝑘 = min 𝑁𝑐 , 𝑁𝑡
𝐸𝑉 ,

𝛼𝑘 ∈ 0,1 , ∀𝑘 ∈ 1,2, … , 𝑁𝑡
𝐸𝑉



Numerical Study Setup

 The EV arrival patterns

 Office, residential area, highway, retail stores

 The proposed method does not
assume prior knowledge of the 
specific arrival patterns

 There are three-time-of-use periods 
in a day

 On-peak, mid-peak, off-peak

 Set 𝑝𝑑 > 𝑝𝑐 to compensate the EV 
customers for battery degradation

Time-of-use
periods (𝒉)

On-peak
12PM-5PM

Mid-peak
8AM-12PM

Off-peak
5PM-8AM

𝑝𝑐 ($/kWh) 0.15

𝑝𝑑 ($/kWh) 0.16

𝑝𝑒 ($/kWh) 0.20 0.10 0.05

𝑝𝑙 ($/kWh) 2.0 1.0 0.5

Electricity Prices



Algorithmic and Hardware Setup

 The neural network parameters

 Hidden layer size: (256,128,64)

 Learning rate: 0.01 and scheduled to decrease

 Discount factor: 1

 Target network update frequency: 25 episodes

 Hardware

 CPU: AMD Ryzen 7, 8-socre

 GPU: NVIDIA RTX 2080Ti

 Memory: 16 GB

Parameter Value Unit

Number of chargers 10~100 -

Number of waiting spots 5~50
-

Battery energy limits 10/100 kWh

Charging power limits -100/100 kW

Step change in charging power 1 kW

Penalty coefficient 0.2 $/kWh

Time horizon 48 Hour

Time interval 15 Minute

Billing period 30 Day

Initial battery energy level ~𝑁(20, 102) kWh

Target battery energy level ~𝑁(80, 102) kWh



Learning Efficiency

 Learned a good policy at around 
1,000 training episodes.

 The net revenues of charging and 
discharging are improved 
significantly.

 The penalty term gradually reduces 
to zero.

 The reduction of demand charge is 
relatively limited.



Profit Comparison with Baseline Methods

 Selected baseline methods

 GRD-noVGI; GRD, MPC (1h and 2h look-ahead), 
MPC-ideal

 GRD (greedy) methods assign EVs based 
on urgency of demand

 MPC (model predictive control) with 
forecasted EV arrival

 Proposed framework outperforms all 
baseline methods except MPC-ideal 
(with an unfair advantage of having the 
perfect knowledge of the future)



Scalability Analysis

 The computation time of the propose CADE framework is much 
shorter than that of the MPC-based method.

Table: Comparison of computation time per step

Station size (𝑵𝒄/𝑵𝒘) 10 / 5 20/10 50/25 100/50

CADE 0.7 ms 0.8 ms 1.1 ms 1.7 ms

MPC (1h) 3 s 8 s 313 s 483 s

MPC (2h) 19 s 42 s 506 s 935 s



Conclusion

 A centralized allocation and decentralized execution (CADE) framework is 
developed to operate a charging station considering waiting area, demand 
charge, and vehicle-grid integration.

 The key contribution is the synergistic combination of reinforcement learning 
algorithm with optimization method.

 Comprehensive numerical studies with different EV arrival patterns show that 
the proposed CADE framework outperforms state-of-the-art baseline 
algorithms.

 The scalability analysis shows that the CADE framework is more 
computationally efficient than the baseline model-based control algorithm.
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