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Background and Challenges

 Background

 In the past decade, the global EV market has been growing 
exponentially.

 To support continued penetration of EVs, it is critical to 
develop smart charging stations that could satisfy the 
charging needs in a cost-effective manner.

 Challenges

 How to determine the optimal charging powers?

 Stochastic arrival/departure of EVs and varying electricity prices

 How to allocate the chargers if there are more EVs than 
chargers?

 Not every parking spot has a charger, varying dwelling time

 How to reduce demand charge?



Literature Review: Charging Scheduling
 Model-based methods

 Multi-stage stochastic programming [Kim 2016] [Wang 2018]; Genetic algorithm [Domínguez-Navarro 2019]

 Rely on sophisticated designs tailored for specific scenarios; “Curse of dimensionality”

 Learning-based methods (for a single EV)

 Tabular Q [Dimitrov, 2014]; Kernel averaging regression functions [Chiș 2016]

 Deep neural networks [Wan 2018]; Focus on the scheduling of a single EV.

 Learning-based methods (for multiple EVs)

 More challenging: dimension of the state space varies with the stochastic arrival of EVs

 Learn a collective EV fleet charging strategy [Vandael 2015]

 Use feature functions to represent the entire station [Wang 2019] or collected features in state vector [Da 
Silva 2019] [Tuchnitz 2021]

 Research Gaps

 Demand charge, vehicle-grid integration (only in single EV studies), waiting area.



Problem Formulation

 Consider a charging station with 𝑁 parking spots, among which 𝑁𝑐 are charging 
spots and 𝑁𝑤 are waiting spots.

 The total profit of a charging station 𝑍 consists of three components

𝑍 = 𝐵 − 𝐶𝑝 − 𝐶𝑙

𝐵: Net revenue from charging and discharging EVs

𝐶𝑝: Penalty if not satisfy EV customers’ energy demand upon departure

𝐶𝑙: Demand charge.



Problem Formulation - Profit

 Suppose the charging power for the 𝑖th EV at time 𝑡 is 𝑎𝑖𝑡.

 If 𝑎𝑖𝑡 ≥ 0, the charging station receives 𝑝𝑡
𝑐 and pays 𝑝𝑡

𝑒 (per kWh)

 If 𝑎𝑖𝑡 < 0, the charging station pays 𝑝𝑡
𝑑 and receives 𝑝𝑡

𝑒 (per kWh)

 The net revenue 𝐵 = σ𝑖∈𝐼σ𝑡∈𝑇𝑚𝑡 𝑎𝑖𝑡 ∆𝑡, where

𝑚𝑡 = ൝
𝑝𝑡
𝑐 − 𝑝𝑡

𝑒 if 𝑎𝑖𝑡 ≥ 0

𝑝𝑡
𝑒 − 𝑝𝑡

𝑑 if 𝑎𝑖𝑡 < 0



Problem Formulation - Penalty

 When an EV leaves without being sufficiently charged, a penalty will be 
imposed to the charging station to compensate the customer.

 Such a penalty shall reflect the gap between the final energy level 𝑒𝑖
𝑓𝑛𝑙

and the 

target energy level  𝑒𝑖
𝑡𝑔𝑡

:

𝑐𝑖
𝑝
= 𝜇 𝑒𝑖

𝑡𝑔𝑡
− 𝑒𝑖

𝑓𝑛𝑙
+

 The total penalty for a charging station is the sum of 𝑐𝑖
𝑝

over all EVs:

𝐶𝑝 =
𝑖∈𝐼
𝑐𝑖
𝑝



Problem Formulation – Demand Charge

 Suppose the set of time-of-use periods to be 𝐻, and ℎ ∈ 𝐻 is one of the time-
of-use periods.

 𝑝ℎ
𝑙 is the price of each kW of peak demand in time-of-use period ℎ.

 The demand charge is

𝐶𝑙 =
𝑇

𝑇𝐵


ℎ∈𝐻
𝑝ℎ
𝑙 ∙ 𝐿ℎ

+

𝐿ℎ = max
𝑡∈𝑇ℎ


𝑖∈𝐼
𝑎𝑖𝑡



Problem Formulation - Summary

 The charging station scheduling problem is formulated as follows

 Maximizing charging station total profit

 Subject to

 Power constraints, space constraints, energy constraints

 If all future information of EVs are known, an oracle is able to obtain the global optimal 
solution of the charging station scheduling problem.

 In practice, it is impossible to have perfect predictions of arriving EVs.

 Instead, model predictive control methods are often developed to handle similar 
problems.

 However, the effectiveness  of MPC-based algorithm relies on accurate prediction of 
future EV arrivals and does not scale well with the size of the problem.



Overview of Proposed Framework: CADE

 Centralized allocation: Determine whether an EV should be allocated to the charging or waiting area

 Decentralized execution: Each individual charger makes its own decision on output power



Decentralized Execution – MDP Formulation

 State Space

 For a charger 𝑗, we define its state of environment at time 𝑡 as:

𝑠𝑗𝑡 = {𝛿𝑗𝑡, 𝑡, 𝑡𝑗
𝑟 , 𝑒𝑗𝑡, 𝑒𝑗𝑡

𝑟 , 𝑁𝑡
𝐸𝑉,𝑤 , 𝐸𝑡

𝑟,𝑤, ෨ℎ𝑡 , 𝐿ℎ𝑡}

 𝛿𝑗𝑡 ∈ 0,1 indicates if there is an EV connected to charger 𝑗.

 𝑡𝑗
𝑟 = 𝑡𝑗

𝑑 − 𝑡 is the remaining dwelling time of the EV connected to the charger.

 𝑒𝑗𝑡 denotes the current energy level of the EV battery.

 𝑒𝑗𝑡
𝑟 = 𝑒𝑗

𝑡𝑔𝑡
− 𝑒𝑗𝑡 is the remaining energy to be charged for  the EV battery.

 𝑁𝑡
𝐸𝑉,𝑤 is the total number of EVs in the waiting area at time 𝑡.

 𝐸𝑡
𝑟,𝑤 is the sum of remaining energy to be charged for all EVs in the waiting area.

 ෨ℎ𝑡 is a one-hot encoded vector indicting the current time-of-use period.



MDP Formulation – Action Space

 Action

 The action for a charge 𝑗 at time 𝑡 is its output power 𝑎𝑗𝑡.

 The upper bound of the power 𝑎𝑗𝑡
𝑢𝑝𝑝𝑒𝑟

= min 𝑎𝑚𝑎𝑥 ,
𝑒𝑚𝑎𝑥−𝑒𝑗𝑡

∆𝑡

 The lower bound of the power 𝑎𝑗𝑡
𝑙𝑜𝑤𝑒𝑟 = min 𝑎𝑚𝑖𝑛,

𝑒𝑚𝑖𝑛−𝑒𝑗𝑡

∆𝑡

 The feasible action space 𝐴𝑗𝑡 = 𝑎𝑗𝑡
𝑙𝑜𝑤𝑒𝑟 , … , 𝑎𝑗𝑡

𝑢𝑝𝑝𝑒𝑟
with uniform difference 

∆𝑎 between adjacent actions



MDP Formulation – Reward

 The reward of a charger: 𝑟𝑗𝑡 = 𝑟𝑗𝑡
𝑏 + 𝑟𝑗𝑡

𝑝
+ 𝑟𝑗𝑡

𝑙

 Net revenue: 𝑟𝑗𝑡
𝑏 = 𝑚𝑡 𝑎𝑗𝑡 ∆𝑡

 Penalty: 𝑟𝑗𝑡
𝑝
= − 𝑐𝑗𝑡

𝑝
+ 𝑐𝑗𝑡

𝑝,𝑤

 From charging area:𝑐𝑗𝑡
𝑝
= ቐ𝜇 𝑒𝑗

𝑡𝑔𝑡
− 𝑒𝑗𝑡

+
if 𝑡𝑟 = 0

0 if 𝑡𝑟 > 0

 From waiting area: 𝑐𝑗𝑡
𝑝,𝑤

=
𝑎𝑚𝑎𝑥−𝑎𝑗𝑡

σ𝑗∈𝐽 𝑎𝑚𝑎𝑥−𝑎𝑗𝑡
𝑅𝑡
𝑝,𝑤

 Demand charge: 𝑟𝑗𝑡
𝑙 =

𝑎𝑗𝑡

σ𝑗∈𝐽 𝑎𝑗𝑡
𝑅𝑡
𝑙



Decentralized Execution – Policy Improvement

 Action Value Function

 The action value functions of the chargers will be 
learned through a deep Q learning (DQN) algorithm

 Operation experiences are shared among all chargers

 Use a deep neural network 𝑄(𝑠, 𝑎; 𝜃) to approximate 
the action value function and a second one 
𝑄(𝑠, 𝑎; 𝜃−) to stabilized the learning process

 The parameters are updated by stochastic gradient descent on the loss function:

𝐿 𝜃 = 𝔼 𝑟 + 𝛾(1 − 𝑑)max
𝑎′𝜖𝐴

𝑄 𝑠′, 𝑎′; 𝜃− − 𝑄(𝑠, 𝑎; 𝜃)
2

 The optimal deterministic policy chooses action 𝑎∗ = 𝑎𝑟𝑔max
𝑎∈𝐴

𝑄∗(𝑠, 𝑎; 𝜃)



Centralized Execution

 Connect the 𝑘th EV to a charger will create an action value 𝑞𝑘
𝑐 = max

𝑎
𝑄(𝑠 𝛼𝑘 = 1 , 𝑎).

 When an EV is parked in a waiting spot, it is equivalent to be connected to a charger with zero 
power output and create an action value 𝑞𝑘

𝑤 = 𝑄 𝑠 𝛼𝑘 = 1 , 𝑎 = 0 .

 Action values represent expected returns.

 The allocation problem can be solved by finding the EV allocation that maximizes the 
summation of the action values:

max
𝛼𝑘


𝑘=1

𝑁𝑡
𝐸𝑉

𝛼𝑘𝑞𝑘
𝑐 + (1 − 𝛼𝑘)𝑞𝑘

𝑤

Subject to:                                                σ𝑘=1
𝑁𝑡
𝐸𝑉

𝛼𝑘 = min 𝑁𝑐 , 𝑁𝑡
𝐸𝑉 ,

𝛼𝑘 ∈ 0,1 , ∀𝑘 ∈ 1,2, … , 𝑁𝑡
𝐸𝑉



Numerical Study Setup

 The EV arrival patterns

 Office, residential area, highway, retail stores

 The proposed method does not
assume prior knowledge of the 
specific arrival patterns

 There are three-time-of-use periods 
in a day

 On-peak, mid-peak, off-peak

 Set 𝑝𝑑 > 𝑝𝑐 to compensate the EV 
customers for battery degradation

Time-of-use
periods (𝒉)

On-peak
12PM-5PM

Mid-peak
8AM-12PM

Off-peak
5PM-8AM

𝑝𝑐 ($/kWh) 0.15

𝑝𝑑 ($/kWh) 0.16

𝑝𝑒 ($/kWh) 0.20 0.10 0.05

𝑝𝑙 ($/kWh) 2.0 1.0 0.5

Electricity Prices



Algorithmic and Hardware Setup

 The neural network parameters

 Hidden layer size: (256,128,64)

 Learning rate: 0.01 and scheduled to decrease

 Discount factor: 1

 Target network update frequency: 25 episodes

 Hardware

 CPU: AMD Ryzen 7, 8-socre

 GPU: NVIDIA RTX 2080Ti

 Memory: 16 GB

Parameter Value Unit

Number of chargers 10~100 -

Number of waiting spots 5~50
-

Battery energy limits 10/100 kWh

Charging power limits -100/100 kW

Step change in charging power 1 kW

Penalty coefficient 0.2 $/kWh

Time horizon 48 Hour

Time interval 15 Minute

Billing period 30 Day

Initial battery energy level ~𝑁(20, 102) kWh

Target battery energy level ~𝑁(80, 102) kWh



Learning Efficiency

 Learned a good policy at around 
1,000 training episodes.

 The net revenues of charging and 
discharging are improved 
significantly.

 The penalty term gradually reduces 
to zero.

 The reduction of demand charge is 
relatively limited.



Profit Comparison with Baseline Methods

 Selected baseline methods

 GRD-noVGI; GRD, MPC (1h and 2h look-ahead), 
MPC-ideal

 GRD (greedy) methods assign EVs based 
on urgency of demand

 MPC (model predictive control) with 
forecasted EV arrival

 Proposed framework outperforms all 
baseline methods except MPC-ideal 
(with an unfair advantage of having the 
perfect knowledge of the future)



Scalability Analysis

 The computation time of the propose CADE framework is much 
shorter than that of the MPC-based method.

Table: Comparison of computation time per step

Station size (𝑵𝒄/𝑵𝒘) 10 / 5 20/10 50/25 100/50

CADE 0.7 ms 0.8 ms 1.1 ms 1.7 ms

MPC (1h) 3 s 8 s 313 s 483 s

MPC (2h) 19 s 42 s 506 s 935 s



Conclusion

 A centralized allocation and decentralized execution (CADE) framework is 
developed to operate a charging station considering waiting area, demand 
charge, and vehicle-grid integration.

 The key contribution is the synergistic combination of reinforcement learning 
algorithm with optimization method.

 Comprehensive numerical studies with different EV arrival patterns show that 
the proposed CADE framework outperforms state-of-the-art baseline 
algorithms.

 The scalability analysis shows that the CADE framework is more 
computationally efficient than the baseline model-based control algorithm.
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