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Background and Challenges

d Background

» Inthe past decade, the global EV market has been growing
exponentially.

» To support continued penetration of EVs, it is critical to

develop smart charging stations that could satisfy the
charging needs in a cost-effective manner.

d Challenges

» How to determine the optimal charging powers?

v' Stochastic arrival/departure of EVs and varying electricity prices

» How to allocate the chargers if there are more EVs than
chargers?

v" Not every parking spot has a charger, varying dwelling time

» How to reduce demand charge?
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Literature Review: Charging Scheduling

(d Model-based methods

$IEEE

»  Multi-stage stochastic programming [Kim 2016] [Wang 2018]; Genetic algorithm [Dominguez-Navarro 2019]

» Rely on sophisticated designs tailored for specific scenarios; “Curse of dimensionality”

[ Learning-based methods (for a single EV)
» Tabular Q [Dimitrov, 2014]; Kernel averaging regression functions [Chis 2016]

»  Deep neural networks [Wan 2018]; Focus on the scheduling of a single EV.

[ Learning-based methods (for multiple EVs)
» More challenging: dimension of the state space varies with the stochastic arrival of EVs
» Learn a collective EV fleet charging strategy [Vandael 2015]

» Use feature functions to represent the entire station [Wang 2019] or collected features in state vector [Da
Silva 2019] [Tuchnitz 2021]

O  Research Gaps

» Demand charge, vehicle-grid integration (only in single EV studies), waiting area.



@ES < IEEE
Problem Formulation \ e |

d Consider a charging station with N parking spots, among which N¢ are charging
spots and N" are waiting spots.

d The total profit of a charging station Z consists of three components
Z=B-CP-C!
B: Net revenue from charging and discharging EVs

CP: Penalty if not satisfy EV customers’ energy demand upon departure

C': Demand charge.
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Problem Formulation - Profit \

d  Suppose the charging power for the ith EV at time t is a;;.

d If a;; = 0, the charging station receives pf and pays pf (per kWh)
d Ifa; <0, the charging station pays pf and receives p; (per kWh)
d

The net revenue B = );¢; Xrer Mt | @it |AL, where

pf —pl if a; <0

p§ Pt
—) ——)
p{ p§

EV customers Charging Station Grid

{Pf —pf ifa;=0
mt —




@Es < IEEE
Problem Formulation - Penalty \ e

d When an EV leaves without being sufficiently charged, a penalty will be
imposed to the charging station to compensate the customer.

(1 Such a penalty shall reflect the gap between the final energy level eifnl and the
target energy level eitgt:

+
P _ tgt _ _fnl
C; = u(ei e; )

(d The total penalty for a charging station is the sum of clp over all EVs:

CP = z clp
i€l
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Problem Formulation — Demand Chargk

[  Suppose the set of time-of-use periods to be H, and h € H is one of the time-
of-use periods.

d p,ll is the price of each kW of peak demand in time-of-use period h.

d The demand charge is
T
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Problem Formulation - Summary \

d The charging station scheduling problem is formulated as follows

A\

Maximizing charging station total profit
» Subject to

v' Power constraints, space constraints, energy constraints

d If all future information of EVs are known, an oracle is able to obtain the global optimal
solution of the charging station scheduling problem.

d In practice, it is impossible to have perfect predictions of arriving EVs.

d Instead, model predictive control methods are often developed to handle similar
problems.

d However, the effectiveness of MPC-based algorithm relies on accurate prediction of
future EV arrivals and does not scale well with the size of the problem.
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Overview of Proposed Framework: CADE
e Y share o Y it -
| Centralized Allocation J network |. Decentralized Execution
- i " Send allocation decision f Broadcast Q network
Request Info. from EVs “ Collect experience ‘
|' — N T \ T ~.
. : : Waiting Area . : </« -g\ |
I | I :
D fama (BE g
| °« > —— 14 4 4 "
i | | Charging Area | | E* |State E‘L | State :
S I T - B R — T S
P - e et — T e e et e e e e e e /
Step 1 Step 2 Step 3
Stochastic arrivals. Allocate EVs to waiting/charging area. Charging/discharging.
t=t+ At

0 Centralized allocation: Determine whether an EV should be allocated to the charging or waiting area

O Decentralized execution: Each individual charger makes its own decision on output power
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Decentralized Execution — MDP Formulation

] State Space

» For acharger j, we define its state of environment at time t as:
—_ T T EV,w r,w 1.
Sit = {0je, L.t , €je, €jp, Ny 7 B¢, e,y L §
;¢ € {0,1} indicates if there is an EV connected to charger j.

tjr = tjd — t is the remaining dwelling time of the EV connected to the charger.

ej; denotes the current energy level of the EV battery.

r _ tgt

NfV'W is the total number of EVs in the waiting area at time ¢.

— ej; is the remaining energy to be charged for the EV battery.

E:’W is the sum of remaining energy to be charged for all EVs in the waiting area.

AN NN VU N N

Et is a one-hot encoded vector indicting the current time-of-use period.
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MDP Formulation — Action Space \ e

J Action

» The action for a charge j at time t is its output power a;;.

. emax_et
> The upper bound of the power a;”"“" = min (am“x, — )
. ) emin_e.t
» The lower bound of the power a}?wer = min (amm, " ! )
> The feasible action space 4;, = {al°%e" ... a*PP¢" ! with uniform difference
jt j jt

Aa between adjacent actions
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MDP Formulation — Reward \

1 The reward of a charger: rj; = 17 + 7}-2; + 7‘]-lt

b _
» Netrevenue: 1j; = mt|ajt|At

. P p pw
» Penalty: Te = — (Cjt +Cjy )

: p M(e-tgt—e- )+ if t"=0
v" From charging area:c;, = Jt

Jt
0 if t">0
/ F t p,w amax_ajt Rp:w
rom waiting area: cC; =
Jjt Zje](amax_ajt) t

» Demand charge: rjlt =
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Decentralized Execution — Policy Improvemenx

(J Action Value Function

» The action value functions of the chargers will be
learned through a deep Q learning (DQN) algorithm

» Operation experiences are shared among all chargers (s, a) » .

» Use a deep neural network Q(s, a; 0) to approximate
the action value function and a second one
Q(s,a; 87) to stabilized the learning process

» The parameters are updated by stochastic gradient descent on the loss function:

L(6) = E[r +y(1 — d) maxQ(s’,a’;67) — Q(s,a; 6)]’

» The optimal deterministic policy chooses action a* = arg max Q*(s,a;0)
a
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Centralized Execution

 Connect the kth EV to a charger will create an action value g, = max Q(s(ay = 1), a).
a

d  When an EV is parked in a waiting spot, it is equivalent to be connected to a charger with zero
power output and create an action value q;’ = Q(s(ax = 1),a = 0).

O Action values represent expected returns.

O The allocation problem can be solved by finding the EV allocation that maximizes the

summation of the action values:
L 5

EV | Centralized Allocation 1
N¢ e e e i —  — —— e — J
rrolraxz akqlg + (1 _ ak)qx/ f Send allocation decision
k k=1 Request Info. from EVs ‘

vt —————— -
. N tE v . c EV / Waiting Area E
Subject to: req @ = min(N¢, NgY), : |
Ea &
a; € {0,1}, vk € {1,2,..,N/"} ' |
|

I
|
! [ Charging Area J :
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Numerical Study Setup
_ 107 .6 Office @ i
The EV arrival patterns | - Residence iy ®
~ 87 —%- Highway /;(. e
, : : : : 0 = Retail o ¢ | )§ :
Office, residential area, highway, retail stores S 6- % ol G‘iié
= 1\ P\ AV
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The proposed method does not &% c’iﬁ' %Q.oﬂé PR ‘}\:"\"'a
_ ] s s & e e L
assume prior knowledge of the ? 40 e AORA NS
specific arrival patterns 01 mggg@‘ 'AEA‘MGEGO < Gim'g
D ] . Time of the Day (hr)
There are three-time-of-use periods Electricity Prices
On—peak, mid—peak, Off-peak periods (h) 12PM-5PM S8AM-12PM 5PM-8AM
p¢ ($/kWh) 0.15
Set pd > p¢ to compensate the EV p® ($/kWh) 0.16
customers for battery degradation pe ($/kWh) 0.20 0.10 0.05
pt ($/kWh) 2.0 1.0 0.5




Algorithmic and Hardware Setup \

J The neural network parameters
Hidden layer size: (256,128,64)

Learning rate: 0.01 and scheduled to decrease

Discount factor: 1

vV V V VY

Target network update frequency: 25 episodes

J Hardware

CPU: AMD Ryzen 7, 8-socre

GPU: NVIDIA RTX 2080Ti

vV V V

Memory: 16 GB
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Parameter Value m

Number of chargers 10~100
Number of waiting spots 5~50
Battery energy limits 10/100
Charging power limits -100/100
Step change in charging power 1
Penalty coefficient 0.2
Time horizon 48
Time interval 15
Billing period 30
Initial battery energy level ~ ~N(20,10%)
Target battery energy level ~N(80,10%)

kWh
kW
kW
S/kWh
Hour
Minute
Day
kWh
kWh
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Learning Efficiency

200 H

100

d Learned a good policy at around
1,000 training episodes. _

¥ _100

—200

d The net revenues of charging and

—300
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d The penalty term gradually reduces =] o
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D The redUCtiOn Of demand Cha rge iS (b) B€, revenue of charging (c) B9, revenue of discharging
relatively limited. o e0
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(d) CP, penalty (e) €', demand charge
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Profit Comparison with Baseline Methok e

20 A
d Selected baseline methods ' ] GRD-noVGl [==1 MPC (1h) =<1 MPC-Ideal (2h)
1 GRD 1 MPC (2h) E= CADL (proposed)
» GRD-noVGI; GRD, MPC (1h and 2h look-ahead), %100
MPC-ideal a
g
d GRD (greedy) methods assign EVs based E 80 -
on urgency of demand o
. . . o 60
d MPC (model predictive control) with o %
forecasted EV arrival £ {
% 40 -
d Proposed framework outperforms all g
baseline methods except MPC-ideal < 20
(with an unfair advantage of having the
perfect knowledge of the future) 0
Office Residence Highway Retail

Arrival Pattern
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Scalability Analysis \

(J The computation time of the propose CADE framework is much
shorter than that of the MPC-based method.

Table: Comparison of computation time per step

Station size (N°/N"Y) 10/5 20/10 50/25 100/50

CADE 0.7 ms 0.8 ms 1.1 ms 1.7 ms

MPC (1h) 3s 8s 313 s 483 s

MPC (2h) 19s 42 s 506 s 935s
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Conclusion

A centralized allocation and decentralized execution (CADE) framework is
developed to operate a charging station considering waiting area, demand
charge, and vehicle-grid integration.

(d The key contribution is the synergistic combination of reinforcement learning
algorithm with optimization method.

d Comprehensive numerical studies with different EV arrival patterns show that
the proposed CADE framework outperforms state-of-the-art baseline
algorithms.

d The scalability analysis shows that the CADE framework is more
computationally efficient than the baseline model-based control algorithm.
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