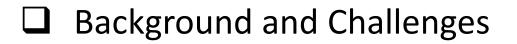


Learning to Operate an Electric Vehicle Charging Station

Considering Vehicle-grid Integration

Zuzhao Ye, Yuanqi Gao and Nanpeng Yu The Department of Electrical and Computer Engineering University of California, Riverside nyu@ece.ucr.edu

Outline



- Literature Review
- Problem Formulation
- Technical Methods
- Numerical Study
- Conclusion

Background and Challenges

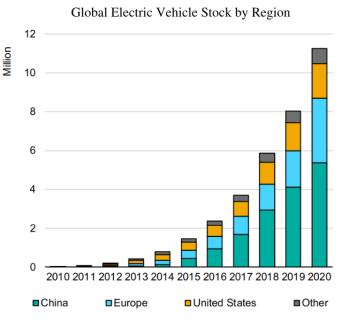
Background

- In the past decade, the global EV market has been growing exponentially.
- To support continued penetration of EVs, it is critical to develop smart charging stations that could satisfy the charging needs in a cost-effective manner.

Challenges

- How to determine the optimal charging powers?
 - ✓ Stochastic arrival/departure of EVs and varying electricity prices
- How to allocate the chargers if there are more EVs than chargers?
 - ✓ Not every parking spot has a charger, varying dwelling time
- ➢ How to reduce demand charge?

Power & Energy Society*



Literature Review: Charging Scheduling

- Model-based methods
- Multi-stage stochastic programming [Kim 2016] [Wang 2018]; Genetic algorithm [Domínguez-Navarro 2019]
- Rely on sophisticated designs tailored for specific scenarios; "Curse of dimensionality"
- □ Learning-based methods (for a single EV)
 - > Tabular Q [Dimitrov, 2014]; Kernel averaging regression functions [Chiș 2016]
 - > Deep neural networks [Wan 2018]; Focus on the scheduling of a single EV.
- Learning-based methods (for multiple EVs)
- More challenging: dimension of the state space varies with the stochastic arrival of EVs
- Learn a collective EV fleet charging strategy [Vandael 2015]
- Use feature functions to represent the entire station [Wang 2019] or collected features in state vector [Da Silva 2019] [Tuchnitz 2021]
- Research Gaps
- > Demand charge, vehicle-grid integration (only in single EV studies), waiting area.

Problem Formulation

- Consider a charging station with N parking spots, among which N^c are charging spots and N^w are waiting spots.
- □ The total profit of a charging station *Z* consists of three components

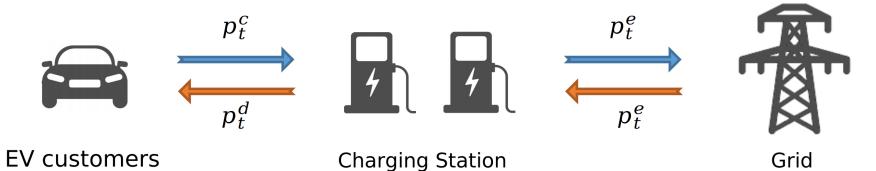
 $Z = B - C^p - C^l$

- *B*: Net revenue from charging and discharging EVs
- C^p: Penalty if not satisfy EV customers' energy demand upon departure
- C^l: Demand charge.

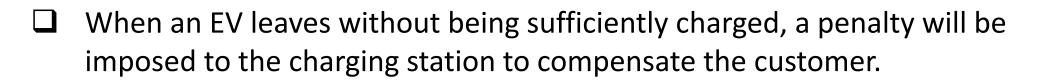
Problem Formulation - Profit

- \Box Suppose the charging power for the *i*th EV at time *t* is a_{it} .
- \Box If $a_{it} \ge 0$, the charging station receives p_t^c and pays p_t^e (per kWh)
- □ If $a_{it} < 0$, the charging station pays p_t^d and receives p_t^e (per kWh)
- **D** The net revenue $B = \sum_{i \in I} \sum_{t \in T} m_t |a_{it}| \Delta t$, where

$$m_t = \begin{cases} p_t^c - p_t^e & \text{if } a_{it} \ge 0\\ p_t^e - p_t^d & \text{if } a_{it} < 0 \end{cases}$$



Problem Formulation - Penalty



□ Such a penalty shall reflect the gap between the final energy level e_i^{fnl} and the target energy level e_i^{tgt} :

IFFF

$$c_i^p = \mu \left(e_i^{tgt} - e_i^{fnl} \right)^{+}$$

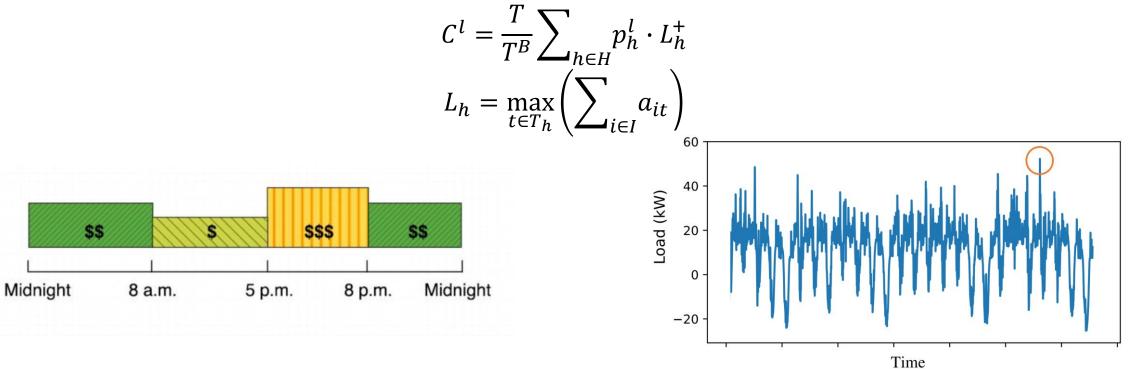
 \Box The total penalty for a charging station is the sum of c_i^p over all EVs:

$$C^p = \sum_{i \in I} c_i^p$$

Power & Energy Society*

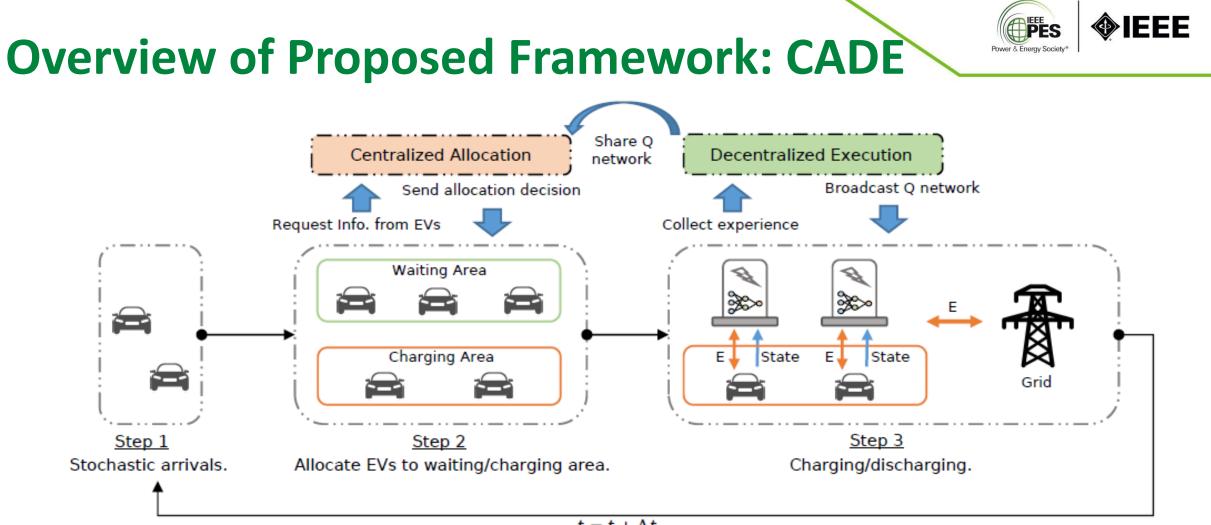
Problem Formulation – Demand Charge

- □ Suppose the set of time-of-use periods to be H, and $h \in H$ is one of the time-of-use periods.
- \square p_h^l is the price of each kW of peak demand in time-of-use period h.
- The demand charge is



Problem Formulation - Summary

- The charging station scheduling problem is formulated as follows
- Maximizing charging station total profit
- Subject to
 - ✓ Power constraints, space constraints, energy constraints
- If all future information of EVs are known, an oracle is able to obtain the global optimal solution of the charging station scheduling problem.
- In practice, it is impossible to have perfect predictions of arriving EVs.
- Instead, model predictive control methods are often developed to handle similar problems.
- However, the effectiveness of MPC-based algorithm relies on accurate prediction of future EV arrivals and does not scale well with the size of the problem.



 $t = t + \Delta t$

Centralized allocation: Determine whether an EV should be allocated to the charging or waiting area

Decentralized execution: Each individual charger makes its own decision on output power

Decentralized Execution – MDP Formulation

State Space

- For a charger *j*, we define its state of environment at time *t* as: $s_{jt} = \{\delta_{jt}, t, t_j^r, e_{jt}, e_{jt}^r, N_t^{EV,w}, E_t^{r,w}, \tilde{h}_t, L_{ht}\}$
 - ✓ $\delta_{jt} \in \{0,1\}$ indicates if there is an EV connected to charger *j*.
 - \checkmark $t_j^r = t_j^d t$ is the remaining dwelling time of the EV connected to the charger.
 - \checkmark e_{jt} denotes the current energy level of the EV battery.
 - ✓ $e_{jt}^r = e_j^{tgt} e_{jt}$ is the remaining energy to be charged for the EV battery.
 - \checkmark $N_t^{EV,w}$ is the total number of EVs in the waiting area at time t.
 - \checkmark $E_t^{r,w}$ is the sum of remaining energy to be charged for all EVs in the waiting area.
 - \checkmark \tilde{h}_t is a one-hot encoded vector indicting the current time-of-use period.

MDP Formulation – Action Space

Action

- \succ The action for a charge *j* at time *t* is its output power a_{jt} .
- > The upper bound of the power $a_{jt}^{upper} = \min\left(a^{max}, \frac{e^{max} e_{jt}}{\Delta t}\right)$
- > The lower bound of the power $a_{jt}^{lower} = \min\left(a^{min}, \frac{e^{min} e_{jt}}{\Delta t}\right)$
- ➤ The feasible action space A_{jt} = {a^{lower}_{jt}, ..., a^{upper}_{jt}} with uniform difference
 ∆a between adjacent actions

MDP Formulation – Reward

D The reward of a charger:
$$r_{jt} = r_{jt}^b + r_{jt}^p + r_{jt}^l$$

 $\blacktriangleright \quad \text{Net revenue: } r_{jt}^b = m_t |a_{jt}| \Delta t$

$$\blacktriangleright \quad \text{Penalty: } r_{jt}^p = -\left(c_{jt}^p + c_{jt}^{p,w}\right)$$

$$\checkmark \quad \text{From charging area:} c_{jt}^{p} = \begin{cases} \mu \left(e_{j}^{tgt} - e_{jt} \right)^{+} & \text{if } t^{r} = 0 \\ 0 & \text{if } t^{r} > 0 \end{cases}$$

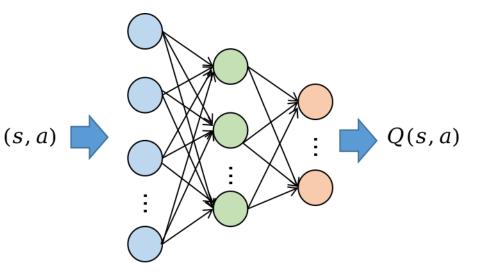
✓ From waiting area:
$$c_{jt}^{p,w} = \frac{a^{max} - a_{jt}}{\sum_{j \in J} (a^{max} - a_{jt})} R_t^{p,w}$$

> Demand charge:
$$r_{jt}^{l} = \frac{a_{jt}}{\sum_{j \in J} a_{jt}} R_{t}^{l}$$

Decentralized Execution – Policy Improvement

Action Value Function

- The action value functions of the chargers will be learned through a deep Q learning (DQN) algorithm
- Operation experiences are shared among all chargers
- → Use a deep neural network $Q(s, a; \theta)$ to approximate the action value function and a second one $Q(s, a; \theta^{-})$ to stabilized the learning process



> The parameters are updated by stochastic gradient descent on the loss function:

$$L(\theta) = \mathbb{E}\left[r + \gamma(1-d)\max_{a' \in A} Q(s', a'; \theta^{-}) - Q(s, a; \theta)\right]^{2}$$

➤ The optimal deterministic policy chooses action $a^* = \arg \max_{a \in A} Q^*(s, a; θ)$

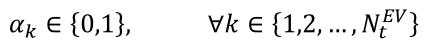
Centralized Execution

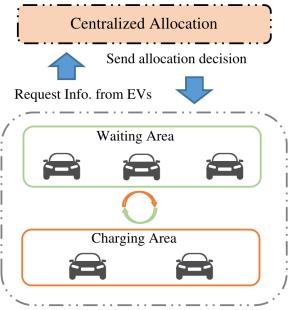
- Connect the *k*th EV to a charger will create an action value $q_k^c = \max_a Q(s(\alpha_k = 1), a)$.
- U When an EV is parked in a waiting spot, it is equivalent to be connected to a charger with zero power output and create an action value $q_k^w = Q(s(\alpha_k = 1), a = 0)$.
- Action values represent expected returns.
- The allocation problem can be solved by finding the EV allocation that maximizes the summation of the action values:

 ∇N_t^{EV}

$$\max_{\alpha_k} \sum_{k=1}^{N_k^{EV}} \alpha_k q_k^c + (1 - \alpha_k) q_k^w$$
$$\sum_{k=1}^{N_t^{EV}} \alpha_k = \min(N^c, N_t^{EV}),$$

Subject to:

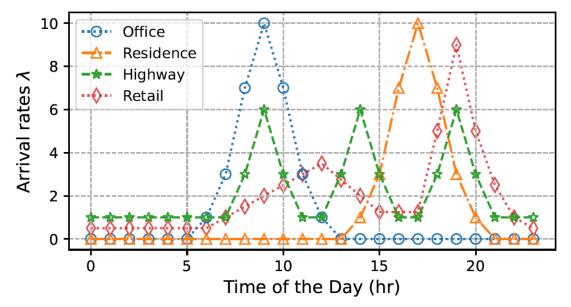




Power & Energy Society*

Numerical Study Setup

- The EV arrival patterns
- Office, residential area, highway, retail stores
- The proposed method does not assume prior knowledge of the specific arrival patterns
- There are three-time-of-use periods in a day
 - On-peak, mid-peak, off-peak
- □ Set $p^d > p^c$ to compensate the EV customers for battery degradation



Electricity Prices

Time-of-use periods (<i>h</i>)	On-peak 12PM-5PM	Mid-peak 8AM-12PM	Off-peak 5PM-8AM
p^c (\$/kWh)		0.15	
p^d (\$/kWh)		0.16	
p^e (\$/kWh)	0.20	0.10	0.05
p^l (\$/kWh)	2.0	1.0	0.5

Algorithmic and Hardware Setup

- The neural network parameters
- ➢ Hidden layer size: (256,128,64)
- Learning rate: 0.01 and scheduled to decrease
- Discount factor: 1
- > Target network update frequency: 25 episodes

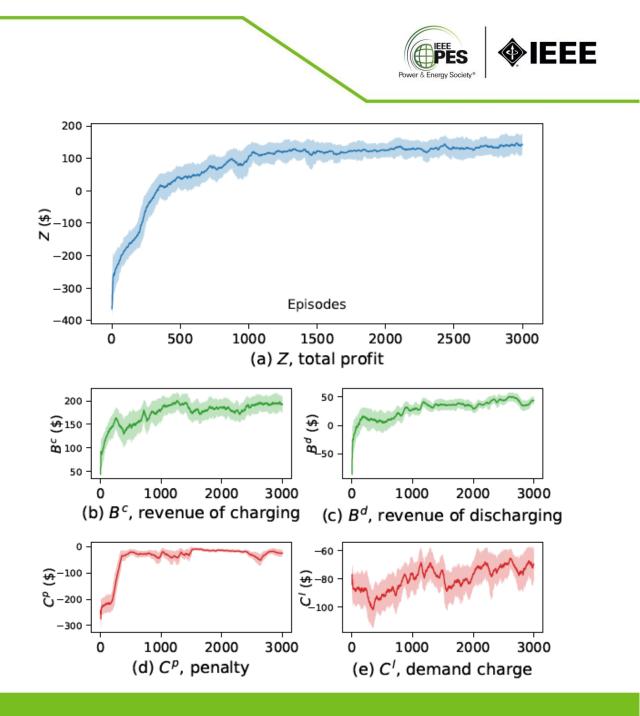
Hardware

- > CPU: AMD Ryzen 7, 8-socre
- GPU: NVIDIA RTX 2080Ti
- Memory: 16 GB

Parameter	Value	Unit
Number of chargers	10~100	-
Number of waiting spots	5~50	-
Battery energy limits	10/100	kWh
Charging power limits	-100/100	kW
Step change in charging power	1	kW
Penalty coefficient	0.2	\$/kWh
Time horizon	48	Hour
Time interval	15	Minute
Billing period	30	Day
Initial battery energy level	$\sim N(20, 10^2)$	kWh
Target battery energy level	$\sim N(80, 10^2)$	kWh

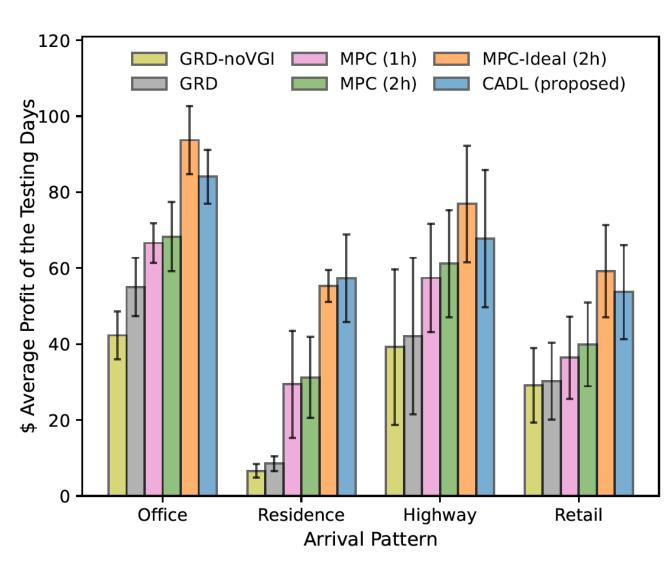
Learning Efficiency

- Learned a good policy at around 1,000 training episodes.
- The net revenues of charging and discharging are improved significantly.
- The penalty term gradually reduces to zero.
- The reduction of demand charge is relatively limited.



Profit Comparison with Baseline Methods

- Selected baseline methods
 - GRD-noVGI; GRD, MPC (1h and 2h look-ahead), MPC-ideal
- GRD (greedy) methods assign EVs based on urgency of demand
- MPC (model predictive control) with forecasted EV arrival
- Proposed framework outperforms all baseline methods except MPC-ideal (with an unfair advantage of having the perfect knowledge of the future)



Scalability Analysis

The computation time of the propose CADE framework is much shorter than that of the MPC-based method.

Table: Comparison of computation time per step

Station size (N^c/N^w)	10 / 5	20/10	50/25	100/50
CADE	0.7 ms	0.8 ms	1.1 ms	1.7 ms
MPC (1h)	3 s	8 s	313 s	483 s
MPC (2h)	19 s	42 s	506 s	935 s

Conclusion

- A centralized allocation and decentralized execution (CADE) framework is developed to operate a charging station considering waiting area, demand charge, and vehicle-grid integration.
- The key contribution is the synergistic combination of reinforcement learning algorithm with optimization method.
- Comprehensive numerical studies with different EV arrival patterns show that the proposed CADE framework outperforms state-of-the-art baseline algorithms.
- The scalability analysis shows that the CADE framework is more computationally efficient than the baseline model-based control algorithm.

Contact Information Nanpeng Yu, nyu@ece.ucr.edu

Thank You

Financial support: University of California, Office of the President and Institute of Transportation Studies

UCR Team Members: Zuzhao Ye and Yuanqi Gao

Publication: Z. Ye, Y. Gao, and N. Yu, "Learning to operate an electric vehicle charging station considering vehicle-grid integration," *IEEE Transactions on Smart Grid*, vol. 13, no. 4, July, 2022.