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Background

• Distributed energy resource (DER) deployment in distribution systems has 
increased considerably

• Coordination of DERs amidst uncertainties is critical to harvesting their potential 
benefits

• Reinforcement learning (RL) is promising for power system applications, and has 
attracted surging attention due to its recent successes



Existing Methods

• Various RL methods have been proposed and investigated in recent years to tackle 
DER coordination challenges
▪ Fitted-Q iteration algorithm to maximize self-consumption of renewable generation (RG) 

and minimize the electricity cost
▪ A multiagent RL framework empowers autonomous agents of DERs and consumers for 

maximizing individual profit
▪ Deep Q-learning method for coordination of battery energy storage systems (BESSs) 

considering microgrid system uncertainties
▪ Deep RL approach to manage the optimal energy consumption of multiple smart homes 

with RG and BESS
▪ Approximate dynamic programming with policy-based exploration for DER coordination 

in a remote microgrid
▪ Deep deterministic policy gradient (DDPG) for optimal scheduling of DERs and service 

restoration



Motivation

• Shortcomings of existing methods:
▪ Many of them are based on lookup table methods, which become inefficient when the 

problem size is large and infeasible when continuous states and actions are involved

▪ BESS loss of life and degradation are not reasonably considered in the RL design

Contribution
• We propose an innovative DDPG-based RL for optimal DER dispatch with BESS loss of 

life explicitly modeled
▪ Both calendrical and cyclical aging effects are taken into account when designing the 

dispatch policy
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Microgrid System Model

• Goal is to optimally dispatch DERs to minimize 
the cumulative operation cost

• DER includes
▪ RG such as photovoltaic (PV) and wind

▪ BESS assets

• Objective function consists of two components 
▪ BESS operation and maintenance (O&M) cost

▪ Energy cost

• Component- and system-level constraints 
include
▪ BESS power limit

▪ BESS state of charge (SOC) transition and limit

▪ Microgrid power balance
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BESS Life Loss
• This paper considers both cyclical and calendrical aging 

effects
• Cycle life loss is determined based on 

charging/discharging operation of BESS
▪ Rainflow algorithm for determining the depth of 

discharge (DOD) 
▪ A cyclical aging model uses DOD to determine cycle life 

loss
• Calendar life loss is determined using a weighted 

modeling approach 
▪ Calendar life loss calculated due to staying at a certain 

SOC and temperature
▪ Life loss is particularly prominent at high SOC

• Cumulative daily cycle life loss and calendar life loss 
are constrained to ensure the expect battery lifetime
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Problem Formulation and DDPG

Source: R. S. Sutton and A. G. Barto, Reinforcement Learning: 
An Introduction. MIT Press, 2018.

Estimate

Target

• Sequential decision-making problem is formalized 
as a Markov decision process
▪ State includes battery SOC, RG output, system load, 

retail price, and cumulative life losses

▪ Action includes BESS charging/discharging power, 
and the power purchased from/sold back to the 
grid

• DDPG is an off-policy deterministic policy gradient 
method
▪ An off-policy method improves learning stability 

and data usage efficiency

▪ Safe exploration is ensured through action 
mapping, clipping, and reward shaping
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Simulation Setup
• Microgrid test system:

▪ 100 kW wind and 50 kW PV

▪ Lithium-ion BESS: 3 years of calendar life and 
600 cycles

▪ 160 kWh BESS energy capacity, 40 kW rated 
power, 83.7% round-trip efficiency

▪ BESS SOC range: [0 1]

▪ Residential load profiles with peak of 100 kW

• DDPG implemented using PyTorch
▪ OpenAI gym for environment 

▪ Neural networks with two hidden layers and 64 
neurons 

▪ ReLU and sigmoid activation functions 



Case Study
• BESS dispatch results without the life loss model 

compared with the life loss model
▪ BESS deep cycled when the life loss is not 

considered in control design, leading to reduced 
lifespan 

▪ Incorporating life-loss model into control design 
helps avoid deep cycling of BESS and expand its 
service life 

• Different daily maximum life loss limits are also 
investigated
▪ BESS expected lifetime is minimum when the life 

loss model ignored
▪ With life loss model, BESS operation optimized to 

minimize cost and ensure expected lifetime 
▪ System with the life loss model considered offers 

10% more savings over the calendar life
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Conclusion and Future Work

• This work proposes an innovative DDPG-based RL approach for optimal DER dispatch, 
considering BESS calendrical and cyclical life loss models.

• Case studies were performed to show that the proposed approach can maximize 
benefits while ensuring the BESS lifespan requirement. 

• One interesting future work is to develop an advanced RL approach based on the 
policy iteration strategy for DER coordination considering distribution power flow.

• Another interesting direction is to develop advanced multi-objective optimization to 
find a good balance between economic benefits and battery lifetime.
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Backup Slide: DDPG Technique
• Critic network

▪ Estimate the action-value function, and the 
network weights are updated to minimize 
the mean square error
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• Actor network
▪ Learn a policy that minimizes the action-

value function
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• Safe exploration is ensured through action 

mapping, clipping, and reward shaping
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