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Machine learning powered residential load 
profiles analysis and flexibility estimation 



Grid Flexibility from Grid Edge

DER-Load interactions are very diversified

Grid edge DERs provide flexibility to participate grid services

PV-based reactive 
power regulation 

Frequency 
regulation 

Peak shaving

• Decision-making on system need: which DERs 
should provide how much services? 

• Decision-making on DER capability: which DERs can 
provide how much flexibility at what time duration?

Solution Load and DER flexibility estimation



DER-Load Flexibility Estimation 
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Load Clustering 
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Clustering Methods
Hierarchical clustering:

• Agglomerative/Divisive algorithm
Partitioning clustering: 

• K-means/K-Medoids/Fuzzy c-Means
Model-based clustering: 

• Self-organizing maps
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Method Number of Clusters Sihouette score

Kmeans 4 0.44

Agglomerative 4 0.34

Multi-layer perceptron 4 0.59



Load Forecasting 
- Long Short Term Memory

• Able to learn the daily 
trends of the electricity 
load profile 

• Usually miss peaks



Transfer Learning Boosted LSTM
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Results Comparison
Forecasting result example

Results Comparison

Baseline: LSTM only 

Max Mean

G+C 30.00% 16.40%

G+C: Generic model + clustered data retrain

Improvement



Consumption 
profiles 

K-means and MLP to               
the profiles 

Representative 
Cluster Center

Transfer learning boosted LSTM to                   the footprint

Time

Cluster 1
Flexibility
Envelope

MLP: Multi-layer perceptron neural network 

LSTM: long short term memory

Community 
survey

Solar/Wind 
Measurements

Load modeling

forecast

cluster

load pattern and 
characteristics



Demand Flexibility Estimation

Aggregated • Different end users can provide 
different flexibility at different time 
of the day

• Need select appropriate end users 
to aggregate to obtain desired 
aggregated flexibility   


