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Predicting the onset of 
cascading events using 

machine learning



Stability/Security assessment using machine learning

Recent approaches

• Stability prediction – predicting system is stable after a disturbance
• Rotor angle stability (transient and small signal)

• Decision trees, neural networks (including convolutional networks and LSTM), support vector machines, etc.
• Binary and multiclass classification

• Voltage stability
• Short term and long term
• Regression for stability margin

• Dynamic Security Assessment – predicting system is secure for credible contingencies
• Commonly binary classification secure/insecure
• Based on static calculations
• Dynamics included

• Various challenges related to sampling, training dataset, performance increase, etc.

[1] L. Duchesne, E. Karangelos, and L. Wehenkel, "Recent Developments in Machine Learning for Energy Systems Reliability Management," Proceedings of the IEEE, vol. 108, no. 9, pp. 1656-1676, 2020.



Predicting cascading events

Complex interactions including the action of protection devices: focus on dynamics

• Move from stability/security prediction to more complex dynamic phenomena
• Hybrid dynamics (protection, tap changers, etc.)
• Capture mechanisms related to rotor angle, voltage and frequency stability, including the impact of converters (modelled in 

an RMS framework)
• Particular focus to dynamics, especially for last stages before collapse

• Use of machine learning models for time series data
• Long Short Term Memory (LSTM) Recurrent Neural Networks to capture time dependencies
• Spatio-Temporal Graph Convolutional Networks (ST-GCN)
• Temporal Convolutional Networks (TCN)

• Predict a protection device will trip (a cascading event happens)
• Predict the reason for the next trip
• Practical aspects

• Time window selection (fast prediction before the first cascade)
• Important measurements to achieve good performance



Cascading failures – brief background

• Complex phenomenon involving various timescales
• Thermal limits, short/long-term voltage, frequency, angular stability

• Need to include dynamics

• Static approaches
• DC or AC power flow

• Dynamic approaches
• More accurate, high computational effort

• A time series prediction problem
• Identification of cascading event (Is it happening or not?)

• What is the reason/mechanism for upcoming trip?

• Stop the evolution of cascades or mitigate impact

[2] Vaiman et al., "Risk Assessment of Cascading Outages: Methodologies and Challenges," in IEEE Trans. on Power Syst., vol. 27, no. 2, pp. 631-641, May 2012.



Modelling of cascading failures

• Dynamic model (RMS) to capture dynamics up to 120-180s
• Capture rotor angle, voltage, frequency dynamics and associated 

devices/control

• Including protection devices

• Operating condition variation: System loading and wind generation

• Initialised by OPF

• Characterise cascades
• Capture detail of evolution: Sequence, components (locational 

aspects) and reason (instability mechanisms)

• Load loss, length of cascades



Modelling of cascading failures
• Type 4 wind generation
• Protection devices

– Synchronous generators
• Over/under-speed
• Pole-slip
• Under-voltage
• Over-excitation limiter

– Non synchronous generation
• Over/Under-voltage
• Over/Under-frequency

– Loads
• UFLS (4 stages)

• Other relevant devices
– AVRs, PSS, Governors, wind with FRT, 

(secondary f control)
– Load tap changers

Modified IEEE 39-bus

• V<V1pu for t>t1ms
or

• V<V2pu for t>t2ms
or

• f<f1pu for t>t3ms

If trip

Example rules
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[3] G. A. Nakas, P. N. Papadopoulos, “Investigation of the Impact of Load Tap Changers and Automatic Generation Control on Cascading Events”, PowerTech 2021, Madrid, Spain (online), June 28 – July 2, 2021.
[4] G. A. Nakas, P. N. Papadopoulos, “Investigation of Cascading Events in Power Systems with Renewable Generation”, ISGT Europe 2020, Delft, Netherlands (online), 26-28 October 2020.



An example of cascading events

Time of Event 
(s) Event Description

1 Three – Phase Fault on 90% of Line 5-7
1.07 Line 5-7 trips by Line Distance 

Protection Relays
122.26 NSG2 disconnected by UV Relay
141.30 NSG3 disconnected by UV Relay
152.80 NSG1 disconnected by UV Relay
155.61 G2 disconnected by UV Relay
156.34 40% of Load C disconnected by UF Relay
156.34 40% of Load A disconnected by UF Relay
156.34 40% of Load B disconnected by UF Relay
156.62 G3 disconnected by Under – Speed 

Relay
156.65 G1 disconnected by Under – Speed 

Relay

[(NSG2-UV), (NSG3-UV), (NSG1-UV), (G2-UV), (Load_C-UF), (Load_A-UF), (Load_B-UF), (G3-US), (G1-US)]
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Component that trips Reason for tripping

1st event 2nd event 3rd event
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Prediction window (time series inputs)

Data Study Group team. (2022, January 5). Data Study Group Final Report



Long Short Term Memory – LSTM

• Aim: Predict a cascading failure is about to happen
• Train ML with simulated time series data offline
• Use in real time utilising available online measurement data
• Binary classification (cascade happens or not)

• Long Short Term Memory – a type of Recurrent Neural Network
• Very effective for handling time series data
• (RNNs) have additional recurrent connections in the hidden layers that can maintain 

information from past states (form a memory)
• LSTMs can retain memory for longer time and remembers over variable time 

intervals 
• LSTMs have memory cell with Input, Output and Forget Gates
• Aims to solve problem of vanishing (or exploding) gradient make it difficult to retain 

memory for long time
• Useful for cascading failures 

• Phenomena spanning various timescales are involved
• Prediction window

• PMU measurements (100ms duration)
• Input X: Number of features × Number of time steps
• Output Y: The probability of the appearance of cascading events



Case study – performance of online prediction

• Predictions possible with 100ms time window and takes 0.042s
• The LSTM model exhibits the highest Accuracy Recall and F1 score
• 17 False Positives predictions and 27 False Negatives out of 1000 

unseen data samples

Practical aspects:

• Machine learning model performance can vary for different 
operating conditions

• Feature importance analysis using the permutation technique
• Identify which features mostly affect the

model performance
• Using only the 20 most important out of the 178 total features leads to a 

reduction of 1.26% in accuracy
• Added noise has no effect on the

model performance

Model Accuracy(%) Precision(%) Recall(%) F1 score(%)
MLP 92.6 97.3 87.6 92.2
RNN 93.8 94.3 93.2 93.8
LSTM 95.6 96.5 94.6 95.5

Actually positive (1) Actually negative (0)
Predicted Positive 473 17
Predicted negative 27 483

Prediction performance

Confusion matrix

LSTM Accuracy(%) Precision(%) Recall(%) F1 score(%)
10 features 84 92.1 74.4 82.3
15 features 90.9 90.2 91.8 90.9
20 features 94.4 96.1 92.6 94.3
With noise 95.6 96.5 94.6 95.5

Performance with limited availability and measurement noise

Feature Importance



Predicting the reason for next trip using TCNs

• Each time window is assigned a label, according to the 
reason of the next cascading event

• 7 possible cases of cascading event reasons\ classes: No 
cascading event, Out-of-step, Over-frequency, Over-voltage, 
Under-frequency, Under-voltage and Distance protection
• Information for corrective control

• Can be used in an online setting as a continuous process

• LSTM, GRU, TCN

• Focal loss function
[5] G. A. Nakas, P. N. Papadopoulos, “Online Identification of Cascading Event Sequences in Power System using Deep Learning”, to be submitted.



Temporal Convolutional Networks

• Temporal Convolutional Network (TCN)
• Used for sequence modelling
• Computations can be more parallelized compared to RNNs
• Do not suffer from vanishing/exploding gradients
• Less memory requirements compared to gated RNNs

• The operation of TCN can be expressed as:
=1 + 

• Causal convolutions, which are convolutions that for 
the output at time t only data points from time t and 
earlier in the previous layer are considered

• 1D fully-convolutional network (FCN), where the size 
of each hidden layer is the same as the input size

• TCN uses dilated convolutions to extend the receptive 
field while using fewer layers

[6] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” arXiv:1803.01271v2 [cs.LG], 2018



Predicting the reason for next trip – case study

• Predictions using 100ms time window and prediction within 
0.077s on average 

• The TCN model performs best, with a total accuracy of 97.4% 
and achieves the lower losses during training and validation. 

• The two LSTM based models, the Stacked
LSTM and the Bidirectional LSTM, perform with a similar 
accuracy, 97% and 96.9% respectively. 

• The GRU, which is the simplest model, has the
lowest total accuracy, at 96.6%, and the highest training and 
validation losses. 



Graph Convolutional Networks to reveal topological aspects

• Cascading failures in power systems exhibit non-local 
propagation patterns

• Exploiting graph convolution by adding a one-dimensional 
convolutional layer behind the graph convolutional layer.

• Binary classification (cascade prediction)

• Weighted adjacency matrix , where A is based on Y-bus

• replaced by *M (element-wise multiplication), where 
M is learned from data including system dynamic behaviour

• Voltages (100ms time window) at n buses as inputs

• Class weighted binary cross entropy (BCE)

[7] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017. 
[8] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems, 2016.
[9] P. D. Hines, I. Dobson, and P. Rezaei, “Cascading power outages propagate locally in an influence graph that is not the actual grid topology,” IEEE Trans. on Power Syst., vol. 32, no. 2, pp. 958–967, 2016.
[10] T. Ahmad, Y. Xhu, P. N. Papadopoulos, “Predicting Cascading Failures in Power Systems using Graph Convolutional Networks”, NeurIPS 2021 Workshop on Climate Change AI 

Model Accuracy(%) Precision(%) Recall(%) F1 score(%)
Vanilla st-GCN 92.56±1.55 84 93.22 88.36
St-GCN+Edge Imp 96.83±1.03 96.45 96.36 96.41

Prediction performance improvement



Revealing functional connections from Graph

• Edge importance matrix, M as an additional trainable parameter inside the spatio-temporal GCN can reveal the 
influence of a set of nodes and edges in model prediction.

• Diagonal elements of M depict the relative importance of various power system buses (graph nodes) , while the off-
diagonal elements of M depict the importance of power system lines  (graph edges) in the prediction of cascades.

is a dense matrix, with 
significant off diagonal 
elements, revealing the 
importance of not only 
local but also multi-hop 
interactions related to 
dynamic behaviour.

imag(Ybus) mirroring 
the physical topology 
of the grid 

Deeper colour gradient means the buses/lines are “closer” in their susceptance-based connectivity and functional-connectivity 
respectively. 

[11] T. Ahmad, P. N. Papadopoulos, “Prediction of Cascading Failures and Simultaneous Learning of Functional Connectivity in Power System”, submitted.



Conclusions

• Need to capture dynamics for cascading failures

• Especially for the last steps of collapse

• Machine learning methods for the prediction of the onset of cascading failures

• More complex dynamic phenomena

• LSTMs, TCNs, ST-GCNs

• Online application: Binary classification and reason for cascade identification

• Can enable corrective control actions to stop or mitigate the effect of cascades

• Exploration of topological aspects

• Complex mechanisms of propagation

• Interaction with ML community
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