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Power System Frequency

Frequency
• AC power system
• Reflection of rotation speed 

of synchronous generators
Importance

• Grid: system stability 
• Consumers: power quality 

d 

Sy
st

em
Fr

eq
ue

nc
y

(H
z)

Time (Sec)

IR PFR

ROCOF

SFR

Frequency
Nadir

0s 5s 30s

50Hz

• Inertia Response (IR): the inherent releasing of 
energy at the rotor of synchronous machines. 

• Primary control: mitigate frequency variation 
(seconds)

• Secondary control: eliminate frequency deviation 
(seconds to minutes)

Source of pictures: website (searched in Google)

Country/Region Australia Europe North America Singapore

Nominal
frequencies (Hz) 50 50 60 50

Normal operating
frequency bands

(Hz)

Interconnected
system: ±0.15

Islanded
system: ±0.5

±0.2

Targeted frequency band:
Eastern Interconnection: 

±0.018
Western Interconnection: 

±0.0228
Texas Interconnection: ±0.030

Quebec Interconnection: 
±0.021

±0.2

Emergency 
frequency

tolerance bands
(Hz)

±1
Extreme

frequency
tolerance band:

47−52

±0.8

Under-frequency load 
shedding:

Eastern Interconnection: 59.5
Western Interconnection: 59.5

Texas Interconnection: 59.3
Quebec Interconnection: 58.5

Under-
frequency

load 
shedding:

49.7
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Load frequency control (LFC)

Model-based:
1. Robust control
Parametric uncertainties.
2. Fuzzy control
Adaptive for unknown system.
3. Variable structure control
Robustness  and response speed.
4. Disturbance rejection control
Augmented model to reject effects.
5. Model-predictive control
Predict system’s behavior and control.
6. etc.

Lower inertia and 
load damping:

Larger and faster power fluctuations: Wind + Photovoltaic

Load

Generation side: power-converter 
interfaced generators (wind, solar).

Transmission side: asynchronous 
interconnection through HVDC links. 

Load side: inverter-based loads.

Conventional methods

Generation side: intermittent 
renewable power generation

Load side: demand response 
program, EV charging load, etc.

Source of pictures: website (searched in Google)

• Stronger modelling capability
• Better control performance
• Higher flexibility and scalability
• etc. 

Data-driven methods



1. Value-based methods – train a Q-value predictor (Q-table)

2. Policy-based methods – train an action predictor (actor)

• Principle: training an agent via iterative interactions with 
the environment. 

• Agent: decision-maker frequency controller 
• Environment: physical world power system
• State (s): current situation of the agent f, ACE, P
• Action (a): agent’s decision generation control signal
• Reward (r): feedback from the environment power 

system’s frequency performance (at time t)
• Action value (Q-value): total expected reward over a

certain time period T

How to model the frequency control problem                                    
into a RL process?
How to solve the RL training process considering                     
power system’s own characteristics/model?

Reinforcement Learning (RL)

Discretized action!
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Given an action, it evaluates the how good the action is.

Explicitly learn a mapping policy π:s→a

Disadvantages:
• Discretized action.
• Non-satisfactory 

performance due to 
discretized action 
space. 

Principle & Framework RL methods 
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Deep Neural 
Network

Advantages:
• Continuous action space.
• Better performance in 

convergence and stability.

Environment

Actor

Critic
Rewards

States

Values (gradients)

Actions

States
into a RL process?
How to solve the RL training process considering    g
power system’s own characteristics/model?



• Optimal control of BESS for f support

• Minimize expected total control cost 
considering the degradation of battery

• Modelling of BESS lifetime 
degradation

• Actor-critic framework 

• Cost approximation with critic

• Developed a policy-based DRL model 
for single-area power system 
frequency control 

• Minimize expected frequency 
deviations 

• Model-assisted gradients derivation

• Stacked denoising auto-encoder 
(SDAE) for feature learning 

• Developed a set of cooperative DRL 
models for multi-area power system

• Centralized learning, decentralized
implementation

• Optimize global action-value function 

• Constraints-aware gradients derivation

• Network initialization to quick start

Our research works

[1] Z. Yan, Y. Xu, "Data-Driven Load 
Frequency Control for Stochastic Power 
Systems: A Deep Reinforcement Learning 
Method With Continuous Action Search," 
IEEE Trans. Power Systems, 2019.

G: generation; L: load; 
RES: renewable energy resources; 
BESS: battery energy storage system

[2] Z. Yan, Y. Xu, "A Multi-Agent Deep 
Reinforcement Learning Method for 
Cooperative Load Frequency Control of 
Multi-Area Power Systems," IEEE Trans. 
Power Systems, 2020.

[3] Z. Yan, Y. Xu, et al, "Data-driven 
Economic Control of Battery Energy 
Storage System Considering Battery 
Degradation," IET Generation. 
Transmission & Distribution, 2020.

BESS controller for frequency 
support [3]Single-area controller [1] Multi-area controllers [2]
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Actor
Input:

Derivative &
Integrate of 
system state,
System state

Output:
Control 
signal

Actor Gradients

Environment

LFC Model-based Critic

Actions

Rewards

Controller
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Action-value function:

Training process

Principle
Optimize the parameters of DRL agent based on data, such that the control policy is optimized and
expected frequency deviations are minimized.

T[W , ]b

Single-area LFC controller 
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n
is input vector with s ss f f

Model-assisted gradient derivation

The gradient of action with respect to agent’ parameters

DNN Updating rule
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Agents-Environment Interaction

Deep reinforcement learning process

[1] Z. Yan, Y. Xu, "Data-Driven Load Frequency Control for Stochastic Power Systems: A Deep Reinforcement Learning Method With Continuous 
Action Search," IEEE Trans. Power Systems, 2019.

DNN’s 
parameters



Single-area LFC controller 

( , ) ( , )( , ) 2 ( , )( ( ))t t t t t t
a t t t t

f s a f s aQ s a t f s a R k
t

( ) (1)( | ) ( [... ( ))]) |
i

n
is input vector with s ss f f XX

( )( )a
df tf t R k
dt

( , 1) ( , )
( , )

1 ( , ) ( , )
r m

l T l T
ij ij a t t l T

k r ij

W W Q s a a
m W

W b

( , ) ( , )
( , )

1= ( , ) ( , )
r m

l T l T
i i a t t l T

k r i

b b Q s a a
m b

W b

0 1

2 3

1/ , 2 [2 ( ) ] / ,

2 [ 2 2 ] / , 2
g t g t

g t g t g t g t

b R b HT T H T T D D

b HT T T T D HT HT D b HT T

( , )( , ) 2 ( , ) t t
a t t t t

f s aQ s a t f s a
a

3 2

3 2 1 03 2

( ) ( ) ( )( ) ( )d f t d f t df ta t b b b b f t
dt dt dt

3 2

3 2 13 2
0

1 ( ) ( ) ( )( ) ( 1)a a a a
d f t d f t df tf t b b b

b dt dt dt

Tricks to improve performance

Model-assisted gradient derivation

Improved agent updating rule

Modifying DDPG

Model-based gradient derivation process

Input X:
Derivative & Integrate of system
state, Proportion of System state
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Stacked denoising auto-encoders:
Initialize the DRL agent by SDAE (supervised learning 

with data generated by PID controller), a deep learning 
tool widely used for feature extraction.

Auto-correlated exploration noise:
Stabilize the exploration process with moving average.

1.

2.

3.
4.

5.



Multi-area power system Multi-area LFC block diagram 

Governor Turbine

GRCDead band

generation dead band (GDB) and generation rate constraints (GRC)

Nonlinear parts 

Intermittent RES: complex cross-area power
balancing between generation and demand.
Cooperative control: how to coordinate the
multiple controllers in all areas.
Constraints: how to consider nonlinear physical
limits while optimizing the controllers.

Problem descriptions

Multi-area LFC controller 

L: loadG: generation
RES: renewable energy sources 
Each area has its own control agent.
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Multi-area LFC controller 

Centralized Learning
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Update the Parameters of Agents

Interconnected 
Power Systems

Area 1

Area N

Area 2

Pc1

Pc2

Pc3

Agent 1

Agent 2

Agent N

Generation 
commandsObserved 

State ACE 1

Observed 
State ACE 2

Observed 
State ACE N

Objective Physical
Constraint

A
gent 1

A
gent 2

A
gent N

Agents-Environment Interaction

Explored
Actions 
&States Calculate Centralized 

Action Value Q

Calculate Actor 
Gradients

Environment: 
Multi-area

Power Systems

States Actions

Optimized Agents Parameters

States

Frequency and Tie-line 
power flows

Global expected action-value:

Training process for each agent:
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DNN Updating rule

Centralized training and decentralized implementation

[2] Z. Yan, Y. Xu, "A Multi-Agent Deep Reinforcement Learning Method for Cooperative Load Frequency Control of Multi-Area Power 
Systems," IEEE Trans. Power Systems, 2020.



Multi-area LFC controller 
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Agent updating rule considering physical limits

Tricks to improve performance
Initialization:

Initialize the DRL agent by supervised learning (data generated by 
PID controller), then further improved with reinforcement learning.

Multi-agent Deep 
Reinforcement Learning

Agent i Agent N

...

, ,i i i
dACE ACE ACE dt
dt

Generate LFC database 
based on PID controller

Optimized DNN 
for single-area

Initial Models 
for all areas

Transfer 
Learning

SA-DRL

A Initial DNN Fine-tuning of DNN parameters

ciP

Use the database to initialize a 
DNN with supervised learning
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A DNN for single-area LFC

1.

2.

3.

4.
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Testing results (LFC model)

Linearized LFC model (no physical limits):

Nonlinearity (GRC&GDB):

• Less expected 
frequency deviations: 
87.7% better than 
DQN, 57.5% better 
than PID.

• Smaller frequency
nadir: 39.6% better 
than DQN, 17.1% 
better than PID.

• Less deviations: 62.5% 
better than DQN, 
22.2% better than PID.

• Improves the LFC 
performance by better 
coordination among all 
the areas

Generation power under GRC&GDB:

Area 1 generation power Total generation in 3 areas

Method Q Mean |ACE| % Max |ACE| [p.u.]

Fine-tuned PID -0.0247 0.037 0.035

(Deep) Q-learning -0.0851 0.093 0.048

Proposed method -0.0105 0.023 0.029

Fine-tuned PID (GRC 
and GDB) -1.8e-3 0.042 0.049

(Deep) Q-learning (GRC 
and GDB) -3.2e-3 0.061 0.049

Proposed method (GRC 
and GDB) -1.2e-3 0.029 0.048

(Less oscillations)



Testing results (time-domain model)
NE 39-bus system with full dynamic model:

• Less frequency deviations: 
76.3% better than DQN, 54.3% 
better than PID.

• Better coordination among all 
the agents

PV stations integrated at load bus 8, 16, 18, 29.

Method Q Mean |ACE| % Max |ACE| [p.u.]

Fine-tuned PID -7.0e-05 0.0095 0.002

(Deep) Q-learning -1.35e-4 0.0119 0.002

Single-agent DDPG -3.4e-05 0.0044 0.002

Proposed MA-DRL -3.2e-05 0.0047 0.002

No control -0.013 0.21 0.002

System frequency for different methods

Numeric comparison

Rotation speed of 9 different generators

average

Objective function: less frequency 
deviations in data-driven methods

More related with 
system’s inertia



Battery energy storage system control for frequency support

High control flexibility and response speed. 
Intensive usage can cause battery aging.

Optimize a DRL agent, such that the expected 
total control cost is minimized
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1) Battery Aging Cost

2) Unscheduled  interchange

4) AGC generation cost

System dynamics with BESS
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(2)
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(4)

Problem description

• Modelling of BESS control cost

• Cost due to battery marginal degradation.

• Cost due to frequency deviations and 
unscheduled power interchanges.

Additional generations to maintain 
frequency

• Control cost approximated by critic network

Battery Energy Storage System

System 
frequency

BESS SoC

AGC 



BESS control for frequency support

Actor NN: 
BESS controller

Online BESS Control
Real-time status

Measured 
system 

frequency

Measured 
BESS 
status

Offline Deep Reinforcement Learning

Real-time BESS control

Control 
BESS power 

output

Reduce 
operating 

cost

Environment

Initialize 
memory buffer 

State

Random load 
disturbances

Input Output

Battery 
aging 

Unscheduled 
interchange 

BESS cost 
estimation

Critic NN:
Cost estimator

Data-driven 
BESS controller

Gradient 
of cost

ts ta

Deep Deterministic Policy Gradient

AGC 
Generation 

Supervised learning

Update
Parameters

ts
ta

Q

Estimated 
control 

cost

ts

Action
ta

ts ta

Reinforcement learning

State

Data Cost approximation with critic:

Expected action-values:

Offline Deep Reinforcement learning
The critic NN approximates total control cost and actor gradients. 
The actor NN (BESS control agent) is optimized with actor 
gradients.

Online BESS control
The real-time control action by the optimized DRL agent already 
considers the control cost.

Cost: battery marginal aging, unscheduled 
interchange, AGC generation

Training process

Critic-based gradients

Gradient of objective to BESS action Gradient of action to 
agent’ parameters

DNN Updating rule

)

Agent-Environment Interaction

[3] Z. Yan, Y. Xu, et al, "Data-driven Economic Control of Battery Energy Storage System Considering Battery Degradation," 
IET Generation. Transmission & Distribution, 2020.



Battery energy storage system control for frequency support

Method C ($) Cb ($) Cu($) Cg ($) Saving (%)

No Batteries 7.73 0.00 6.10 1.63 0.0

Proposed 5.25 0.72 2.90 1.63 32.1

Droop with 
SoC 7.53 1.43 4.47 1.62 2.6

Droop with
larger gains 7.83 4.92 1.29 1.62 -1.3

System frequency in 3 areas

Accumulative cost (each component)

Accumulative cost (total)

Numerical results (random load changes)

• Reduced 32.1% total control cost.
• The BESS control is improved by avoiding discharging 

when depth-of-discharge is relatively high

Battery cycle life loss
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