

22PESGM3013

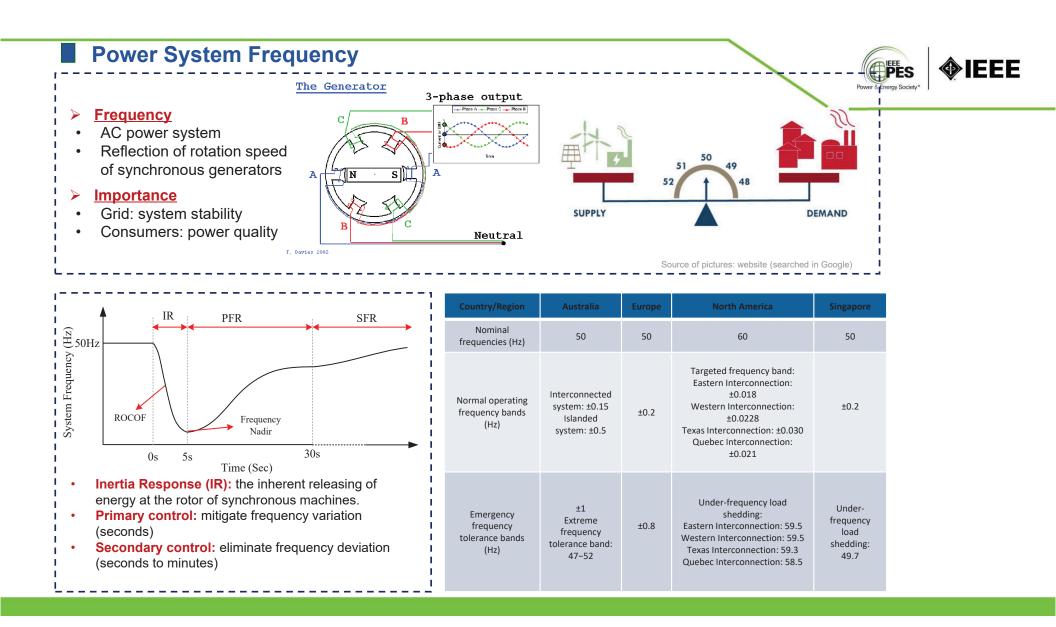
Data-driven frequency control of stochastic power systems

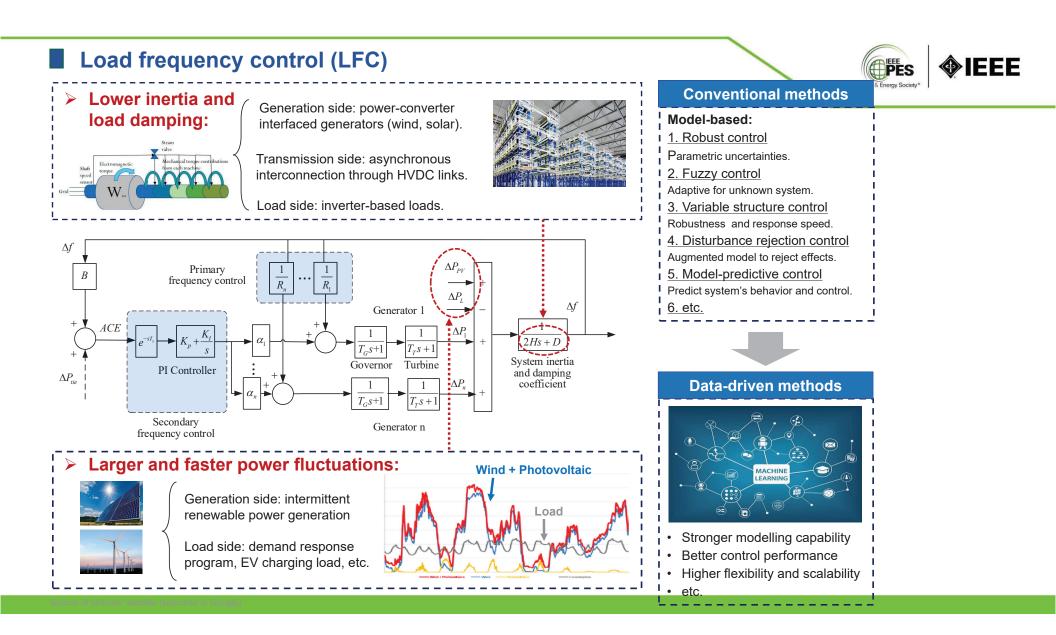
Dr Yan Xu Associate Professor | School of EEE Nanyang Technological University Singapore

Panel Session Title: Enhancing power system operation through online analytics

1. Background

- 2. Methodology
- 3. Single-area system control
- 4. Multi-area system control
- **5. Optimal BESS control**

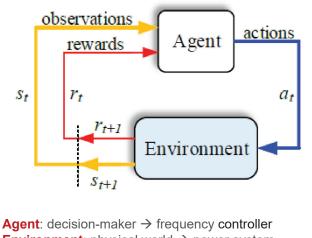




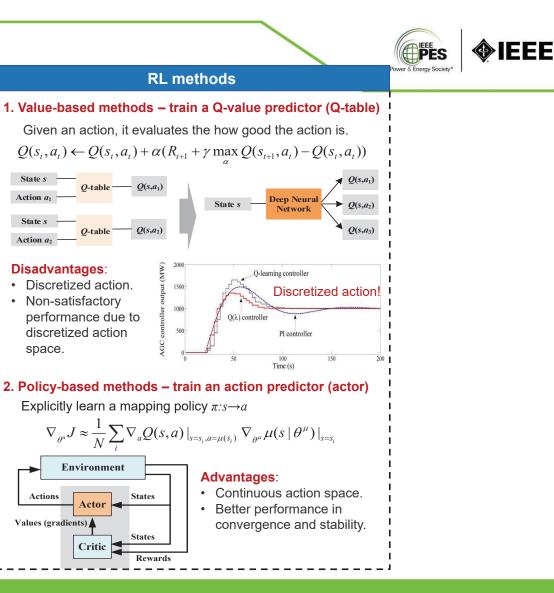
Reinforcement Learning (RL)

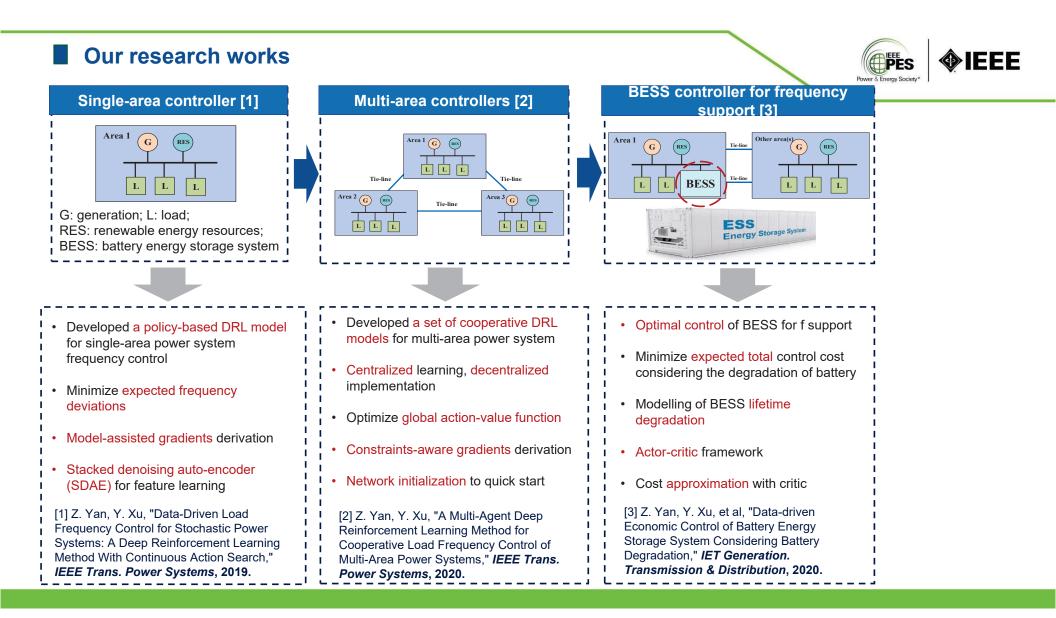
Principle & Framework

 Principle: training an agent via iterative interactions with the environment.



- Environment: physical world → power system
- State (s): current situation of the agent \rightarrow f, ACE, P
- Action (a): agent's decision → generation control signal
- Reward (*r*): feedback from the environment → power system's frequency performance (at time *t*)
 Action value (Q-value): total expected reward over a
- certain time period T
- How to model the frequency control problem
- into a RL process?
- How to solve the RL training process <u>considering</u> power system's own characteristics/model?

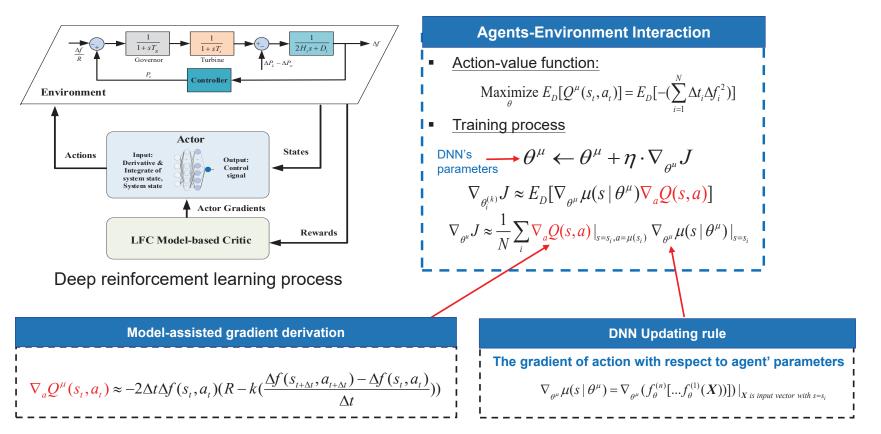




Single-area LFC controller

Principle

Optimize the parameters $\theta = [W^T, b]$ of DRL agent based on data, such that the control policy is optimized and expected frequency deviations are minimized.

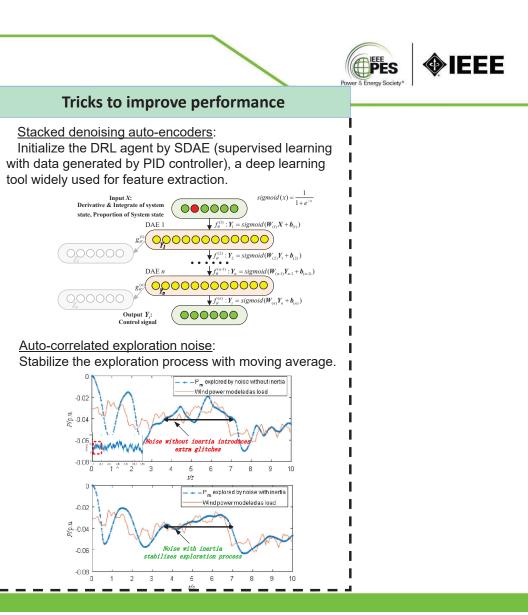


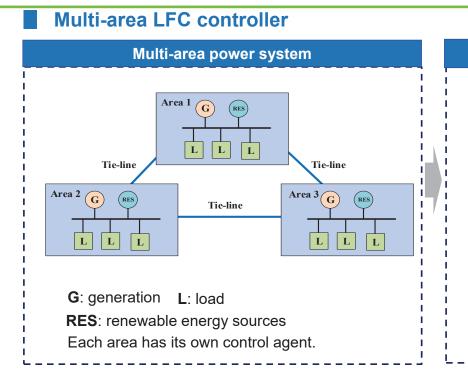
[1] Z. Yan, Y. Xu, "Data-Driven Load Frequency Control for Stochastic Power Systems: A Deep Reinforcement Learning Method With Continuous Action Search," *IEEE Trans. Power Systems*, 2019.

Single-area LFC controller

Model-based gradient derivation process

Model-assisted gradient derivation $\nabla_a Q^{\mu}(s_t, a_t) = -2\Delta t \Delta f(s_t, a_t) \frac{\partial \Delta f(s_t, a_t)}{\partial a_t}$ 1. $\int a(t) = b_3 \frac{d^3 f(t)}{dt^3} + b_2 \frac{d^2 f(t)}{dt^2} + b_1 \frac{df(t)}{dt} + b_0 \Delta f(t)$ $\underline{2.} \qquad \begin{cases} b_0 = 1/R, b_1 = 2HT_gT_t[2H + (T_g + T_t)D]/D, \\ b_2 = 2HT_gT_t[T_gT_tD + 2HT_g + 2HT_t]/D, b_3 = 2HT_gT_t \\ \nabla_a f(t) = \frac{1}{b_0}(-b_3\nabla_a \frac{d^3f(t)}{dt^3} - b_2\nabla_a \frac{d^2f(t)}{dt^2} - b_1\nabla_a \frac{df(t)}{dt} + 1) \end{cases}$ $\nabla_a f(t) \approx R - k \frac{df(t)}{dt}$ Modifying DDPG $\nabla_a Q^{\mu}(s_t, a_t) \approx -2\Delta t \Delta f(s_t, a_t) (R - k(\frac{\Delta f(s_{t+\Delta t}, a_{t+\Delta t}) - \Delta f(s_t, a_t)}{\Delta t}))$ 3. $\nabla_{\boldsymbol{\alpha}^{\mu}} \mu(s \mid \boldsymbol{\theta}^{\mu}) = \nabla_{\boldsymbol{\theta}^{\mu}} (f_{\boldsymbol{\theta}}^{(n)}[...f_{\boldsymbol{\theta}}^{(1)}(\boldsymbol{X}))])|_{\boldsymbol{X} \text{ is input vector with } s=s_i}$ Improved agent updating rule $\underbrace{\mathbf{5.}}_{l} \quad \left\{ \begin{array}{c} W_{ij}^{(l,T+1)} = W_{ij}^{(l,T)} - \eta \frac{1}{m} \sum_{k=r}^{r+m} \nabla_{a} \mathcal{Q}^{\mu}(s_{t},a_{t}) \frac{\partial}{\partial W_{ij}^{(l,T)}} a(\boldsymbol{W}, \boldsymbol{b}) \\ b_{i}^{(l,T)} = b_{i}^{(l,T)} - \eta \frac{1}{m} \sum_{k=r}^{r+m} \nabla_{a} \mathcal{Q}^{\mu}(s_{t},a_{t}) \frac{\partial}{\partial b_{i}^{(l,T)}} a(\boldsymbol{W}, \boldsymbol{b}) \end{array} \right.$





Multi-area LFC block diagram $B_{\cdot}\Delta f$ $1/R_{i}$ $2H_i s + D_i$ Controller for Area i Governor - Turbine $\Delta P_{tie,t}$ Σ Control Area i B. $B.\Delta f$ $K_i(s)$ $\overline{2H_is+D_i}$ Controller for Area j Governor - Turbin ΔP_{tie} Σ

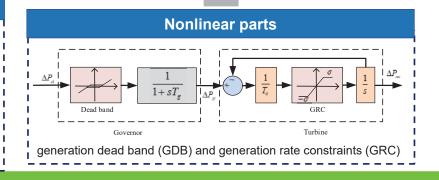
IEEE

PES

ergy Society*

Problem descriptions

- Intermittent RES: complex cross-area power balancing between generation and demand.
- Cooperative control: how to coordinate the multiple controllers in all areas.
- Constraints: how to consider nonlinear physical limits while optimizing the controllers.

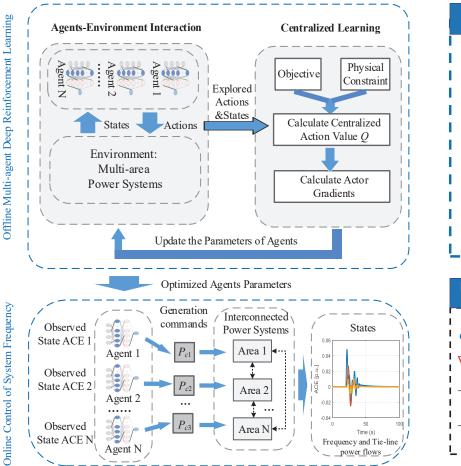


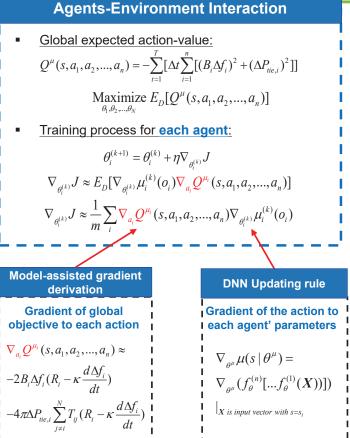
 ΔP_{e}

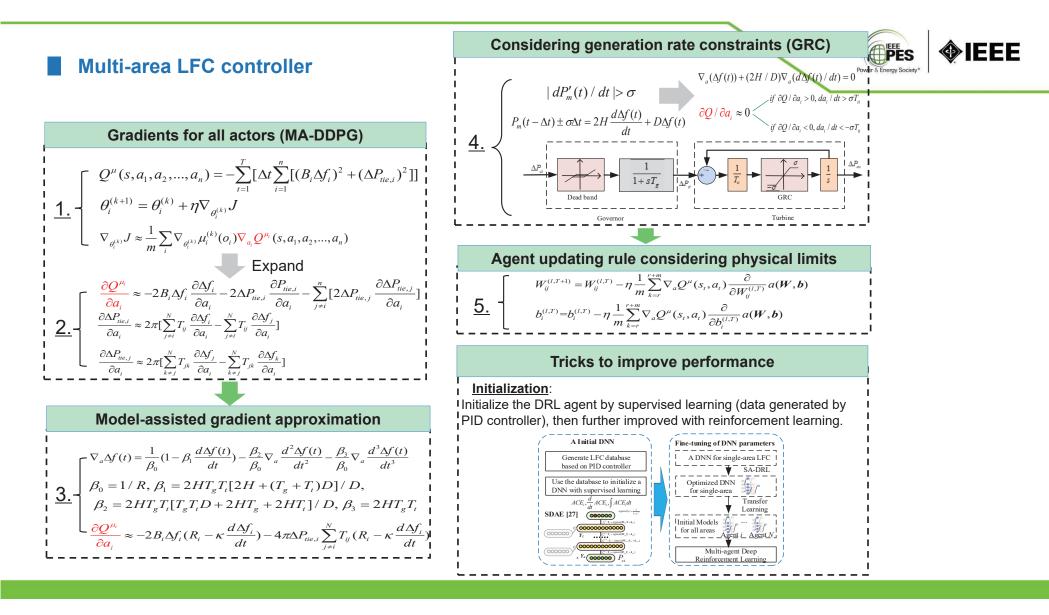
Control Area j

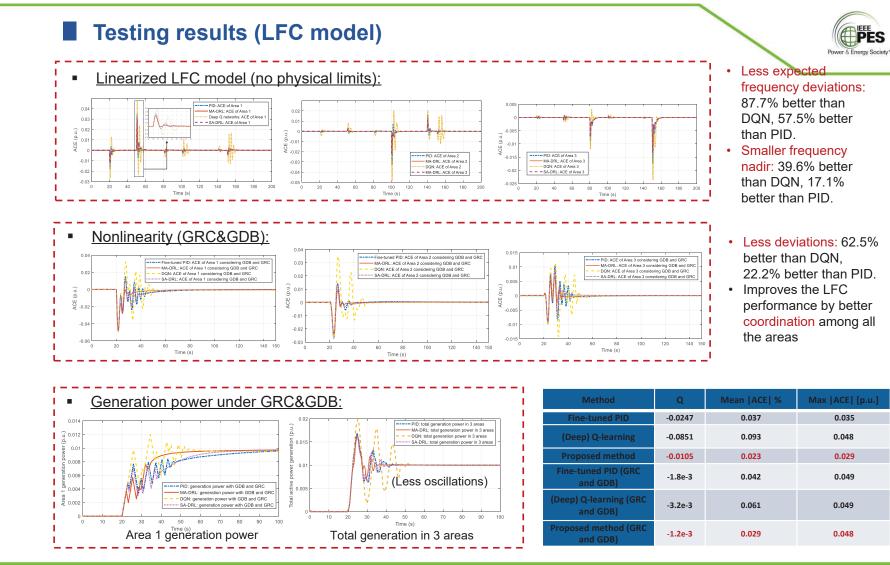
Multi-area LFC controller

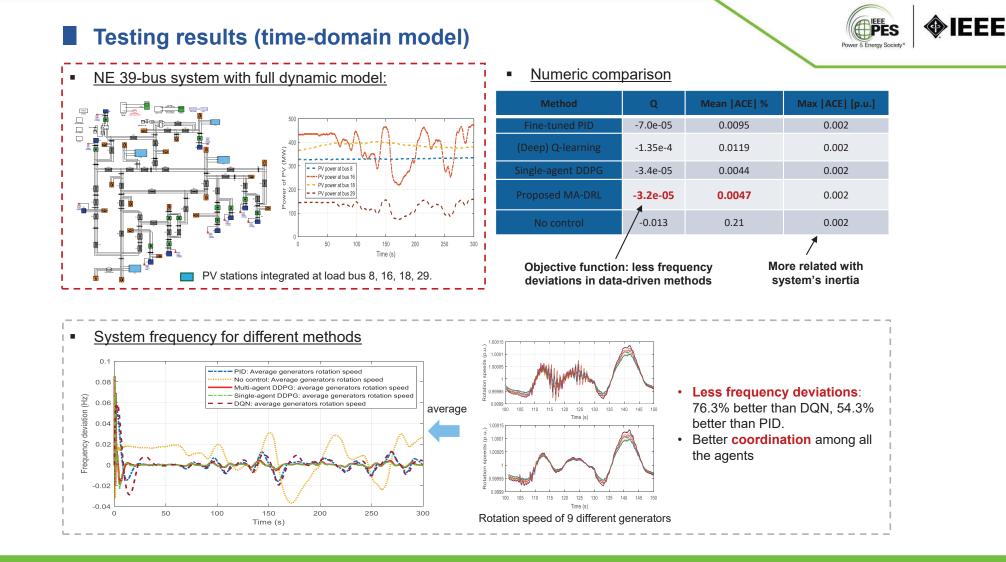
Centralized training and decentralized implementation

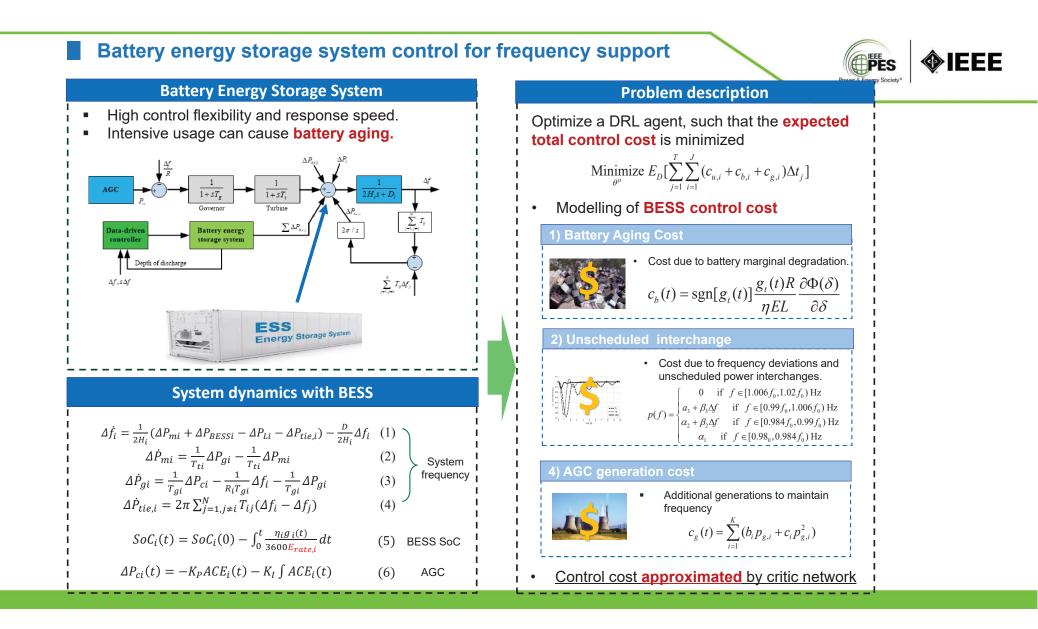


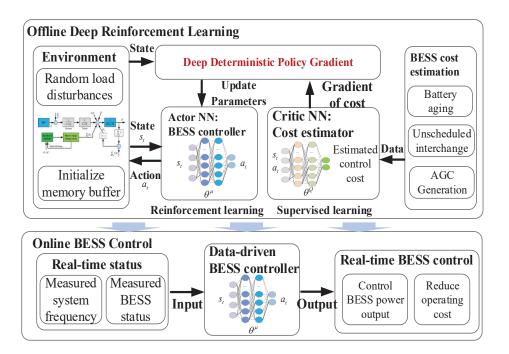




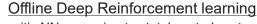








BESS control for frequency support



The critic NN approximates total control cost and actor gradients. The actor NN (BESS control agent) is optimized with actor gradients.

Online BESS control

The real-time control action by the optimized DRL agent already considers the control cost.

Agent-Environment Interaction

Expected action-values:

Maximize $E_D[Q^{\mu}(s_t, a_t)]$

- <u>Cost:</u> battery marginal aging, unscheduled interchange, AGC generation
 - Cost approximation with critic:

$$Q^{\mu}(s_{t}, a_{t}) = -\sum_{T} [c_{b}(t) + c_{u}(t) + c_{g}(t)]\Delta t$$
$$\min_{\theta Q} ||Q_{R} - h_{\theta Q}^{(n)}[\dots h_{\theta Q}^{(1)}(s, a))] ||^{2}$$

Training process

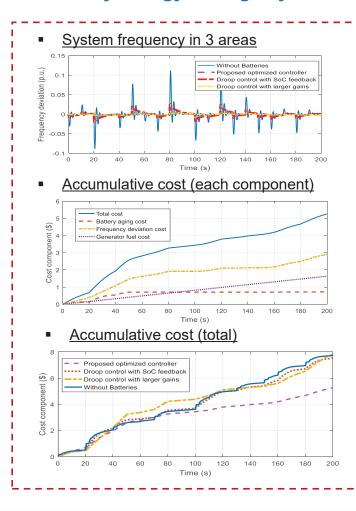
$$\theta^{\mu'} = \theta^{\mu} + \eta \cdot \nabla_{\theta^{u}} J$$

$$\nabla_{\theta^{u}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q}) \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})$$

Critic-based gradients	DNN Updating rule
Gradient of objective to BESS action $Q_R \approx h_{\theta^Q}^{(n)}[\dots h_{\theta^Q}^{(1)}(\boldsymbol{s}, a))$ $\nabla_{\!a} Q(s, a) \approx \nabla_{\!a} h_{\theta^Q}^{(n)}[\dots h_{\theta^Q}^{(1)}(\boldsymbol{s}, a))$	Gradient of action to agent' parameters $\nabla_{\theta^{\mu}}\mu(s \theta^{\mu}) =$ $\nabla_{\theta^{\mu}}(f_{\theta}^{(n)}[\dots f_{\theta}^{(1)}(X))])$

[3] Z. Yan, Y. Xu, et al, "Data-driven Economic Control of Battery Energy Storage System Considering Battery Degradation," *IET Generation. Transmission & Distribution*, 2020.

Battery energy storage system control for frequency support



1 Numerical results (random load changes) 1 н 1 C_b (\$) **C**_u(\$) C_g (\$) Saving (%) Method No Batteries 7.73 0.00 6.10 1.63 0.0 0.72 1.63 32.1 5.25 2.90 Proposed Droop with 7.53 1.43 4.47 1.62 2.6 **Droop with** 7.83 4.92 1.29 1.62 -1.3 Battery cycle life loss BESS is discharging Initial SoC: 40% Initial SoC: 40% Initial SoC: 65% Initial SoC: 90% Life loss (40% SoC) Life loss (65% SoC) - MM BESS is charging to increase SOC output Life loss (90% SoC) 3atter, 60 Time (s) 20 40 60 80 100 120 140 160 180 200 80 Time (s) Reduced 32.1% total control cost. • • The BESS control is improved by avoiding discharging when depth-of-discharge is relatively high

Thank you!

Dr Yan Xu Associate Professor | School of EEE Nanyang Technological University xuyan@ntu.edu.sg

