Power & Energy Society®

Spyros Chatzivasileiadis

Associate Professor
ity of Denmark (DTU)

Ivers

ical Un

c
=
o
=




(exes

=
—
=

$IEEE

This work would not have been possible withou&
the hard work of several people! Many thanks to...

i

ke _
Andreas Rahul ligiz Lejla Jochen Spyros
Venzke Nellikkath Murzakhanov Halilbasic Elea Prat Stiasny Chatzivasileiadis

And to our collaborators:

Dan Molzahn, GeorgiaTech

fren Steven Low, Caltech
Flori G i rynjar
gl Vieyrie Sam Savarsson Guannan Qu, Caltech (now at CMU)

Chevalier

19 July 2022 DTU Wind and Energy Systems - Spyros Chatzivasileiadis




=
—
=

i

$IEEE

Machine Learning in Power Systems: Why? \ @@3

« Machinelearning “surrogate” models can deliver solutions 100-1'000 faster than
conventional models with acceptable accuracy

- ML models can be used to screen very fast a very large number of scenarios, in order to
focus on the critical ones

« Problem #1: Data is not enough
— Available data might be scarce or might not cover all abnormal situations.

— Potential solution: Learn from the physics = Physics-Informed Machine Learning

e Problem #2: Can we trust the outputs of the ML models?
- Potential solution: Trustworthy ML
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Transient Stability Assessment with
Physics-Informed Neural Networks




¥ Neural Networks: An advanced i acwaticorrect value
“~ form of non-linear regression Ji: estimated value [~

Loss function: Estimate best wy, w,
to fit the training data

min  |[y; — ¥l
W1,W2

S.t.
Yi=wi +wyx; Vi

Traditional training of neural networks
required no information about the
underlying physical model. Just data!
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Physics-Informed Neural Networks @@Es ©IEEE
for Power Systems
“Original” “Physics-Informed” T T
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G.S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural Networks for Power Systems.
Presented at the Best Paper Session of IEEE PES GM 2020. https://arxiv.org/pdf/1911.03737.pdf
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Physics-Informed Neural Networks (es | 9IEEE
for Power Systems
« Physics-Informed Neural Networks (PINN) could |——Exact - - - Predicted
. P =0.17 [p.u.] P =0.18 [p.u.]
potentially replace solvers for systems of {5 - - - — : -
differential-algebraic equations in the long-term = 3
- Probable power system application: % s
Extremely fast screening of critical '
contingencies Y = W B
_ 0.4 04
« Inourexample: PINN 87 times faster than ODE ¥ i3
solver g
3 ot =
. . . 0.2 02
- Candirectly estimate the rotor angle at any time 0 5 10 15 2 0 5 10 15 20
Time [s] Time [s]

instant

Codeis available on GitHub: https://github.com/jbesty

G.S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural Networks for Power Systems. Presented at the
Best Paper Session of IEEE PES GM 2020. https://arxiv.org/pdf/1911.03737.pdf
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Computation time: (s | GIEEE
== Classical numerical solvers vs.
Physics-Informed NNs
A [ J
© |o RK45#1
8 o RK45#2 Classic solvers

1072 1 . 8 o RK45#3
g 6 © A o PINN#1
é 8 o PINN#2 PINNs
g o o PINN#3
S -s8 °
g | C ional .
g:f i « Physics-Informed Neural Networks can
= > 1008 determine the outputs more than 100x faster
g , than classical numerical solvers
= 1077 |
0 i Y — The further we look in time, e.g. what is the

; o °© o o o o frequency at t=1s, the larger the
o © o o o o o ) i
° e ° o ° ° computational advantage is
10~° _ : R _
0.01s O.1s 1s J.Stiasny, G. S. Misyris, S. Chatzivasileiadis, Transient Stability Analysis with

Prediction time ¢ [s] Physics-Informed Neural Networks. https://arxiv.org/abs/2106.13638 [ code ]
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Angle bus 1
81 — &1 [rad]

Angle bus 9

Frequency bus 3

Error distribution
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NN
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Accuracy:

Standard Neural Networks (NN)
vs Physics-Informed NNs (PINN)

e PINNSs result in lower errors than standard
neural networks

. Theerrorincreases as we look further into the
future

« PINNs can deliver an excellent screening tool,
l.e.to very quickly assess if critical scenarios are
secure or not.

- Todetermine the exact numerical values,
classic solvers are still very valuable

J.Stiasny, G. S. Misyris, S. Chatzivasileiadis, Transient Stability Analysis with
Physics-Informed Neural Networks. https://arxiv.org/abs/2106.13638 [ code ]
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Small-signal stability assessment
and tuning of controller gains with
trustworthy neural networks
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An Example

« North Sea Wind Power Hub

« Wind Hub Operators offer energy and
primary frequency control and primary
voltage control

- Candetermine both Pand Q, and
- K,fand K, (freq. droop and voltage droop)

« What are the permissible combinations of
P.Q, Ky, and K, that satisfy:

— Small-signal Stability (e.g. (>3%), for all
— N-1contingencies

Problem extremely difficult to solve: infinite
combinations

19 July 2022 DTU Wind and Energy Systems - Spyros Chatzivasileiadis
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J.Stiasny, S. Chevalier, R. Nellikkath, B. Seevarsson, S. Chatzivasileiadis. Closing
the Loop: A Framework for Trustworthy Machine Learningin Power Systems.
Accepted to 2022 REP Symposium - Bulk Power System Dynamics and
Control - X (REP). Banff, Canada.2022. [ paper | code ]
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Step 1:

Learn the permissible region of P,Q, K, ;, andl(v\

Goal: satisfy small-signal stability margin for all N-1 contingencies

w

Training
Database

19 July 2022

Train Neural
Network

Worst-case
Guarantees

NN Verification/

DTU Windand Energy Systems - Spyros Chatzivasileiadis

Enrich Database:
Verification-

(s | ©IEEE
Satisfied? Final NN with
—.—es' Performance
no y Guarantees

Informed
Sampling
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== Neural Network Verification: HOW? \ @Es PIEEE

1. Exact transformation: Convert the neural network to a set of linear equations with
binaries

- The Neural Network can be included in a mixed-integer linear program

2. Formulate an optimization problem (MILP) and solve it = certificate for NN behavior

3. Assessif the neural network output complies with the ground truth
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== FromNeural Networks to \ m@"\'is PIEEE
Mixed-Integer Linear Programming
Non-linear Linear weights . Most usual activation function: ReLLU
act|vat|on\
functions

e RelLU: Rectifier Linear Unit

output

v

input
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== FromNeural Networks to \ @es 9 IEEE
Mixed-Integer Linear Programming
& - ,LM . %
1. ButReLU can be transformed to a piecewise q . ‘>< P
linear function with binaries Dowas 8

output I

4

input ]
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== FromNeural Networks to \ @;es 9 IEEE
Mixed-Integer Linear Programming
& - ,LM . %
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From Neural Networks to \ (e#es | IEEE

Mixed-Integer Linear Programming

Non-linear Linear weights
activation
functions

24

w.
s

@
But ReLU can be transformed to a piecewise “a1 >

o [} o L] L] u
linear function with binaries 5

Uy %
;%"

5

‘ 2. lcanencode all operations of a Neural Network

/ » to a system of linear equations with continuous
/r and binary variables

~ 3

3. Icanintegrate allinformationencodedina
neural network inside an optimization
program

w3

output ‘
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DTl Certify the output for a continuous N (Es

range of inputs

1.  Weassume a given input X, with
classification “safe”
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A.Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power
System Applications. /EEE Transactions on Smart Grig, Jan. 2021. https://arxiv.org/pdf/1910.01624.pdf




Certify the output for a continuous N (s
range of inputs ”
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1. Weassume a given input X with
classification “safe”

2. Solve optimization problem: Find the
minimum distance for which the
classification changes?

3. Outcome:

a) |cancertify that my neural network will
classify the whole continuous region as
“safe”

b) |have eitheridentified the classification
boundary or a misclassified point >
sample around it and enrich the training
database

A.Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power
System Applications. /EEE Transactions on Smart Grig, Jan. 2021. https://arxiv.org/pdf/1910.01624.pdf
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Step 1:

Learn the permissible region of P,Q, K, ;, andl(v\

Goal: satisfy small-signal stability margin for all N-1 contingencies

w

Training
Database

19 July 2022
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Step 2:
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Convert Verified Neural Network to an
Optimization Problem
Goal: satisfy small-signal stability margin for all N-1 contingencies

Exact transformation

Z Final NN with Small-signal stable
K _— Performance ﬁ’ 5
P Guarantees orallN-1 Convgrt .NN.to an
Ky Optimization
Problem

Optimization Problem #1

Forgiven Pr*ef , Q;ef, what is the maximum range of K, and K;, around K, ¢ o and K, o
that ensures small-signal stability for all N-1contingencies?

Optimization Problem #2

Forgiven Kp,r and Ky;, what is the maximum range of Py, and Q.. around Py..¢ o and Qref o
that ensures small-signal stability for all N-1 contingencies?

19 July 2022 DTU Windand Energy Systems - Spyros Chatzivasileiadis
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« Physics-Informed Neural Networks use the underlying physical models to estimate
solutions 100-1"000 faster than conventional models

— useful for screening very fast large number of scenarios

« Trustworthy Al can help determine permissible ranges of operation that
— would be very difficult to determine otherwise
— with a predefined level of trust (worst-case guarantees)
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Networks. https://arxiv.org/abs/2106.13638 [ code ]
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Power System Applications. [EEE Trans. on Smartgrid. 2021. https://arxiv.org/pdf/1910.01624.pdf

A.Venzke, G.Qu, S. Low, S. Chatzivasileiadis, Learning Optimal Power Flow: Worst-case Guarantees
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video
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Article without any equations ©

S. Chatzivasileiadis, A. Venzke, J. Stiasny and
G. Misyris, "Machine Learning in Power
Systems:IsIt Timeto TrustIt?,"in /EEE
Powerand Energy Magazine, vol. 20, no. 3,
pp. 32-41, May-June 2022 [ .pdf ]

All publications available at:
www.chatziva.com/publications.html

Some code available at:
www.chatziva.com/downloads.html




