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Machine Learning in Power Systems: Why?

• Machine learning “surrogate” models can deliver solutions 100-1’000 faster than 
conventional models with acceptable accuracy

• ML models can be used to screen very fast a very large number of scenarios, in order to 
focus on the critical ones

• Problem #1: Data is not enough

– Available data might be scarce or might not cover all abnormal situations. 

– Potential solution: Learn from the physics Physics-Informed Machine Learning

• Problem #2: Can we trust the outputs of the ML models? 

– Potential solution: Trustworthy ML
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Transient Stability Assessment with 
Physics-Informed Neural Networks
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min,
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= +

: actual/correct value: estimated value

Loss function: Estimate best , 
to fit the training data

Traditional training of neural networks 
required no information about the 

underlying physical model. Just data!

Neural Networks: An advanced 
form of non-linear regression
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““Original”     
Loss function

Swing equation

“Physics-Informed” 
term

G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural Networks for Power Systems. 
Presented at the Best Paper Session of IEEE PES GM 2020.  https://arxiv.org/pdf/1911.03737.pdf

Physics-Informed Neural Networks 
for Power Systems
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Code is available on GitHub: https://github.com/jbesty

G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural Networks for Power Systems. Presented at the 
Best Paper Session of IEEE PES GM 2020. https://arxiv.org/pdf/1911.03737.pdf

• Physics-Informed Neural Networks (PINN) could 
potentially replace solvers for systems of 
differential-algebraic equations in the long-term

– Probable power system application: 
Extremely fast screening of critical 
contingencies

• In our example: PINN 87 times faster than ODE 
solver

• Can directly estimate the rotor angle at any time 
instant

Physics-Informed Neural Networks 
for Power Systems
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Computation time: 
Classical numerical solvers vs. 
Physics-Informed NNs

• Physics-Informed Neural Networks can 
determine the outputs more than 100x faster 
than classical numerical solvers

– The further we look in time, e.g. what is the 
frequency at t=1s, the larger the 
computational advantage is
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Classic solvers

PINNs

RK45 #1

RK45 #2

RK45 #3

PINN #1

PINN #2
PINN #3

0.01s 0.1s 1s J. Stiasny, G. S. Misyris, S. Chatzivasileiadis, Transient Stability Analysis with 
Physics-Informed Neural Networks. https://arxiv.org/abs/2106.13638 [ code ] 
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Accuracy: 
Standard Neural Networks (NN) 
vs Physics-Informed NNs (PINN)

• PINNs result in lower errors than standard 
neural networks

• The error increases as we look further into the 
future

• PINNs can deliver an excellent screening tool, 
i.e. to very quickly assess if critical scenarios are 
secure or not.

– To determine the exact numerical values, 
classic solvers are still very valuable
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J. Stiasny, G. S. Misyris, S. Chatzivasileiadis, Transient Stability Analysis with 
Physics-Informed Neural Networks. https://arxiv.org/abs/2106.13638 [ code ] 
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Small-signal stability assessment 
and tuning of controller gains with 
trustworthy neural networks 
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An Example

• North Sea Wind Power Hub

• Wind Hub Operators offer eenergyy and
primary ffrequencyy control aand primary
voltagee control

– Can determine both P and Q, aand

– KKp,f andd Kv (freq. droop and voltage droop)

• What are the permissible combinations of 
P,Q, Kp,f , and Kv that satisfy: 

– Small-signal Stability (e.g. >3%), fforr all

– N-1 contingencies

Problemm extremelyy difficultt too solve: infinitee 
combinations

J. Stiasny, S. Chevalier, R. Nellikkath, B. Sævarsson, S. Chatzivasileiadis. CClosingg 
thee Loop:: AA Frameworkk forr Trustworthyy Machinee Learningg inn Powerr Systems. 
Accepted to 2022 iREP Symposium - Bulk Power System Dynamics and 
Control - XI (iREP). Banff, Canada. 2022. [ paper | code ]
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Step 1: 
Learn the permissible region of P,Q, Kp,f , and Kv
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Training 
Database

Train Neural 
Network

NN Verification/
Worst-case 
Guarantees

Final NN with 
Performance 
Guarantees

Enrich Database: 
Verification-

Informed 
Sampling

Satisfied?

yes
no

Goal: satisfy small-signal stability margin for all N-1 contingencies

Trustworthy AI
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Neural Network Verification: HOW?

1. Exact transformation: Convert the neural network to a set of linear equations with 
binaries

• The Neural Network can be included in a mixed-integer linear program

2. Formulate an optimization problem (MILP)  and solve it certificate for NN behavior

3. Assess if the neural network output complies with the ground truth

13
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• Most usual activation function: ReLU

• ReLU: Rectifier Linear Unit
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From Neural Networks to 
Mixed-Integer Linear Programming

Linear weightsNon-linear 
activation 
functions

input

output
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From Neural Networks to 
Mixed-Integer Linear Programming

input

output

1. But ReLU can be transformed to a piecewise 
linear function with binaries

output
If input<0 , set 

binary =0 use

linear function #1
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From Neural Networks to 
Mixed-Integer Linear Programming

input

output

1. But ReLU can be transformed to a piecewise 
linear function with binaries

input

If input>0 , set 
binary =1 use

linear function #2

output
If input<0 , set 

binary =0 use

linear function #1
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From Neural Networks to 
Mixed-Integer Linear Programming

2. I can encode all operations of a Neural Network 
to a system of linear equations with continuous 
and binary variables

3. I can integrate all information encoded in a 
neural network inside an optimization 
program

input

output

1. But ReLU can be transformed to a piecewise 
linear function with binaries

input

If binary =1, 

linear function #2

output

If binary =0, 

linear function #1
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A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power 
System Applications. IEEE Transactions on Smart Grid, Jan. 2021.  https://arxiv.org/pdf/1910.01624.pdf

1. We assume a given input xref with 
classification “safe”

Certify the output for a continuous 
range of inputs
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Certify the output for a continuous 
range of inputs
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1. We assume a given input xref with 
classification “safe”

2. Solve optimization problem: Find the 
minimum distance for which the 
classification changes?

3. Outcome: 
a) I can certify that my neural network will 

classify the whole continuous region as 
“safe”

b) I have either identified the classification 
boundary or a misclassified point 
sample around it and enrich the training 
database

A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power 
System Applications. IEEE Transactions on Smart Grid, Jan. 2021.  https://arxiv.org/pdf/1910.01624.pdf
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Step 1: 
Learn the permissible region of P,Q, Kp,f , and Kv
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Training 
Database

Train Neural 
Network

NN Verification/
Worst-case 
Guarantees

Final NN with 
Performance 
Guarantees

Enrich Database: 
Verification-

Informed 
Sampling

Satisfied?

yes
no

Goal: satisfy small-signal stability margin for all N-1 contingencies

Trustworthy AI
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Step 2: 
Convert Verified Neural Network to an 
Optimization Problem 
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Final NN with 
Performance 
Guarantees

Goal: satisfy small-signal stability margin for all N-1 contingencies

P
Q
Kp,f

Kv

Small-signal stable 

for all N-1? Convert NN to an 
Optimization 

Problem

Exact transformation

For given , , what is the maximum range of , and around , , and ,
that ensures small-signal stability for all N-1 contingencies?

For given , and , what is the maximum range of and around , and ,
that ensures small-signal stability for all N-1 contingencies?

Optimization Problem #1

Optimization Problem #2
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Wrap-up

• Physics-Informed Neural Networks use the underlying physical models to estimate 
solutions 100-1’000 faster than conventional models 

– useful for screening very fast large number of scenarios

• Trustworthy AI can help determine permissible ranges of operation that

– would be very difficult to determine otherwise

– with a predefined level of trust (worst-case guarantees)

22
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Thank you!
Spyros Chatzivasileiadis

Assoc. Prof, Head of Section

www.chatziva.com

spchatz@dtu.dk
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All publications available at: 

www.chatziva.com/publications.html

Some code available at:

www.chatziva.com/downloads.html

Article without any equations 
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