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Outline

*  Qutages: how do they occur and
what is their impact?

» State of Risk (SoR) Predictions.
Why the outage risk assessment
matters

*  Example #1: SoR Prediction and
management of component
outages

Example #2: SoR prediction and
management of system-wide
outages

‘Smart Grids Big Data|
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Outage causes, weather in particular

. S - FIGURE 1. U.S. Electric Grid Disruptions
Major causes of power outages in the U.S.
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Electric Disturbance Event Date
The Department of Energy tracks major electric disturbance events through Form OE-417. Utilities submit information about qualifying

incidents, including when they occurred, where they occurred, what triggered them, and how many customers were affected. Notably, while the
reported number of non-weather-related events is high, the vast majority of incidents resulting in customer outages oceur because of weather.

SOURCE: UCS ANALYSIS, BASED ON OE N.D. © Union of Concerned Scientists 2015; www.ucsusa.org/ lightsout

M. Kezunovic and T.J. Overbye, “Off the Beaten Path: Resiliency and Associated Risk,” IEEE Power and Energy Magazine, Vol. 16, No. 2, March/April 2018
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Outage Impacts

THE COST OF POWER OUTAGES

Scenario Damage Estimated Cost (USD)  Customers Effected Typical Outage Duration
Low Impact + Blown single phase 0-$250 Lessthan 50 residential Fuse: 1 hour or less / )1/\
Sectionalizing Fuse on the circuit customers Recloser: Momentary & ﬁ
* Recloser Operation

Moderate + Recloser Lockout $100 - $500 50 - 500 customers 1-2hours $1 o 000 526 807
Impact - Blown 3 phase Sectionalizing 9 9

Fuse on the circuit (requires

Frozen Pipes Flooded Basement
a patrol)
High Impact Moderate Substation Damage $10,000 - $100,000 500 - 2500 customers  1day — 1 week o
« Damaged Circuit Breakers . 500 30 Ooo
+ Damaged equipment bushings, ‘ & $ -$ 9
warped bus work B Mold Removal
Catastrophic Heavy substation damage $100.000 - $1IM+ 2500 or greater Multi day or greater
Impact « Requiring major reconstruction

or long lead time item

s1Q | 5250
£

Catastrophic Major or Complete Rebuild $1M+ and greater 2500 or greater Weeks to Months Alternate Shelter Restock Refrigerator
Plus + Requiring major reconstruction Per Night —
Impact or long lead time item
Sources:
rEpIacement SUCh o mgula:ars Michigan Fire Claims, Inc., MoldRe mediationCostGuide.com, Hotels.com, Fema.gov.
and transformers, maybe “Big Cost of Flooding” ia-1i
taking years before complete USDA: https:fwww.usda.gow/
restoration
$140,000 Electricity Prices in California rose 6x more than in the
£120.000 rest of the U.S.
18 4
$100,000 T6:6, gl
g £50,000 ‘é 16 1 - : y
o <
$60,000 S :
9 14 43 -
$40,000 & + CA
g # US average (excluding CA)
3 10.1 9.9 9.9 10.1 10.1 101
9 | | — £ 4 19k 9.6 ‘?L_,.\‘. . o—9o—0—9
Baich Continuous Financial Heatthcare / Grocery / Offices Retail Government / 8 g —o—¢
Manufacturing ~ Manufacturing  Senvices / Digital Hospital Foed Store Education
Ecenomy 8
Business sector -] 2011 2012 2013 2014 2015 2016 2017 2018 2019
Base: Total respondents {n = 805). Quessons 60 to 65 ©E Sowrce PROGRESS

Source: US Energy Information Agency, 2011 - 2019
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Improving resilience through risk prediction

Disturbance and Impact Resilience
Evaluation Curve
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<> Phases of Disturbance s PROBABILISTIC SPATIO-TEMPORAL PREDICTION OF RISK

M. Kezunovic, Z. Obradovic, T. Dokic, B. Zhang, J. Stojanovic, P.
T. Mc. Junkin, C.G. Rieger, "Electricigi( distribution system resilient Dehghanian, and P. -C. Chen, “Predicting Spatiotemporal Impacts of
controld_systedm hmetrlt_:s.'2|01l7) Resilience Weekt; Workshop Weather on Power Systems using Big Data Science,” Pedrycz, Witold,
Proceedings, Idaho National Laboratory, September '2017 Chen, Shyi-Ming (Eds.), Springer Verlag, Data Science and Big Data: An
Environment of Computational Intelligence, ISBN 978-3-319-53474-9,
2017.
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Correlation between the outage causes and related data
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M. Kezunovic, L. Xie, S. Grijalva, “The Role of Big Data in Improving Power System Operation and Protection,” Bulk Power System Dynamics and Control
Symposium, Rethymnon, Greece, August 2013.
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Weather Driven Risk Analysis

State of Risk = Hazard x Vulnerability x Economic Impact

/ \ AN

* Probability of hazardous * Probability that hazardous + Expected economic impact
weather conditions conditions will cause an in case of an event
event in the network

* Depends on Weather » Depends on the type of
Forecast * Depends on Historical economic loss that the
Weather and Outage Data user wants to consider

* Pick a momentin time (or a

period of time) and estimate * Learn from the historical * |dentify type of economic
probability of hazardous data what may happen if loss that is of interest for
conditions hazardous conditions occur the study and calculate it
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Correlate the Causes and Impacts Hazard > Vulnerability— Risk
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Weather Threats
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Example #1: SoR Prediction and management of
component outages

Example #2- SoR prediction and management of system-
wide outages

M. Kezunovic, P. Pinson, Z. Obradovic, S. Grijalva, T. Hong, and R. Bessa, “Big Data Analytics for Future Electricity Grids,” Electric Power Systems
Research, Vol. 189, No., pp. 106788, 2020.
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Example #1:Prediction of Outages due to Distribution Vegetation

Enviromental Impacts:
precipitation, wind,

temperature, humidity,
lightning

3

GROWTH TIM»E Network Vulnerability
Tree 'I!rimmirlg omlage Rear.tilve Tree Periocllil: Tree
Trimming Trimming Scheduled

Performed
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T
WEATHER MEASUREMENTS

I temperature; wind speed, gust and direction; precipitation; humidity; pressure, lightning parameters I

VEGETATION MAP FROM HIGH RESOLUTION IMAGERY
I distance to the lines, growth rate, canopy height, canopy spread, helth index, tree species I

Weather Hazard

Risk Map
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i 4 ——ithind
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e L Overall risk reduction 32.85%

Reactive tree trimming cost reduction 27.2%

T. Dokic, M. Kezunovic, “Predictive Risk Management for Dynamic Tree Trimming Scheduling for Distribution Networks,” IEEE Transactions on Smart Grid, Vol.
10, No. 5, pp- 4776-4785, September 2018, DOI: 10.1109/TSG.2018.2868457.
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Example #2: Using Nano-Grid for outage mitigation

PV inverter

« Traditional Power System: nano-Grid (n-Grid) g::tregg
a) Generation :
b) Transmission

c) Distribution — Passive for Residential Loads ot || G Flexible
L e T O Load

Rooftop PV

Transformation
at the Grid

Edge

New Challenges:
«  Photovoltaic (PV) Generation * New loading peaks and voltage conditions EV charging.
- Stationary Battery Energy * New complexities in the consumer load profile.
Storage
* Mobile Battery Energy
Storage (Electric Vehicle)

New Opportunities:
* n-Grid flexibility in providing services to the grid and load.
+ Utility grid opportunity to utilize the n-Grid flexibility

M. Kezunovic, M. Soleimani, H. Abu-Rub, S. Bayhan, M. Trabelsi, “Hardware in the Loop Simulation of a Nano-Grid Transactive Energy Exchange®, 2nd
International Conference on Smart Grid and Renewable Energy (SGRE) 2019 , Doha, Qatar, November, 2019, DOI: 10.1109/SGRE46976.2019.9020686.
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n-Grids to market

Mod ;

1 operator via
aggregator
n-Grids to

distribution system

M(;de operator (DSO) with
or without
aggregator

n-Grids in peer-to-

peer exchange with

Mc;de DSO coordination,

and with or without
aggregator

Mode 2

Electricity Market Operator
and Aggregator i

(]l @]

Mode 3

n-Grids
n-Grid operating modes
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Utility (Distribution
System Operator)

M. Kezunovic, M. Khoshjahan, M. Soleimani, “Harvesting
the Nano-Grid Flexibility,” 2021 CIGRE Grid of the Future
Symposium, Providence, RI, October 2021.




» The aggregator is envisioned as a mediator

between the n-Grids and the WSM.

» It can manage the n-Grids resources
directly through internet of things (loT).

» The aggregator must capture different
uncertainties (risks) to ensure its
profitability:

* market prices,

* EVs arrival, departure and initial energy,
* ambient temperature,

* PV generation and

* n-Grids’ electric load.

Control
signals
= ——— BUY |
Status
signals

Wholesale Market

[ SELL

-—— e mm omm om omm omm

7
________________________ -

The n-Grid aggregator framework for participation in WSM.
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M. Khoshjahan, M. Kezunovic, “Robust Bidding Strategy for Aggregation of Distributed Prosumers in Flexiramp Market,” Electric Power Research
Journal, 2022 (In print)




Conclusions

« State of Risk (SoR) prediction using Big Data gives TRANSFORMATIONAL
opportunities for risk assessment, management and mitigation

* |If we are able to PREDICT forced outages, this offers pro-active opportunities
for control, planning and protection management and mitigation actions

« The outage PREDICTION can be at different spatiotemporal scales, minutes to
hours, days and quarters, and spatial as granular as component or system

* The time spent on DATA PREPARATION is the most consuming part of the
overall development, and may take up to 80% of the development efforts

« The TEST RESULTS are easy to confirm since the testing can be done using
the data from the past when the outcomes of the events are already known
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Thank you!
Questions?

LEE LR L

Mladen Kezunovic, Ph.D., P.E. -
Tel: (979) 587-9660 ‘
E-mail: m-kezunovic@tamu.edu A4

Webpage: https://pscpresume.engr.tamu.edu/
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