

Data Challenges for Distribution Grids with High Solar Penetration

Dr. Devarajan Srinivasan CTO, Poundra LLC

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number DE-EE0008773.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Team

- Arizona State University: Dr. Raja Ayyanar, Dr. Vijay Vittal, Dr. Qin Lei, Dr. Yang Weng, Sushrut Thakar, Nikhil Korada, Yunpeng Si, Jingyi Yuan, Madhura Sondharangalla, Jiaqi Wu
- **Iowa State University:** Dr. Manimaran Govindarasu, Dr. Gelli Ravikumar, Moataz Abdelkhalek
- Poundra LLC: Dr. Devarajan Srinivasan, Kunal Shah
- Hitachi America Ltd: Dr.Bo Yang, Dr. Joseph Chongfuangprinya
- Arizona Public Service: Dr. Daniel Haughton, Cynthia Rojas
- **NREL:** Dr. Yingchen Zhang, Dr. Michael Emmanuel
- **DOE SETO:** Shay Banton, Robert Reedy, Dr. Hariharan Krishnaswami

Need for Data

High Solar Penetration Distribution Grids

Monitor/Control BTM Devices

Extend secure utility reach behind the meter to achieve:

Situational Awareness

Monitor BTM devices

- Monitor performance of DER and grid
- Increase operational flexibility optimize grid operations
- Improve safety detect faults and disturbances
- Increase reach and affordability of DER customer participation
- Solve technical, economical, and regulatory challenges

DER Control

Control BTM devices

- Improve performance of DER and Grid
- Deploy diverse DER options behind the meter
 - EVs, residential storage, demand response, dispatch DER
- Take advantage of grid-planning tools
 - Time of use controls
- Use advanced analytics
- Improve safety

Robust Distribution Grid

Reliable, Secure, and Resilient

- Prevent, withstand, and recover from cyber attacks
- Harden against and recover from natural disasters
- Detect, mitigate, and recover from faults
- Improve grid reliability metrics under high DER penetration
- Increase energy diversity
 - EVs, residential storage, demand response
- Lower operational costs

Data Challenges

High Solar Penetration Distribution Grids

Data Generators (Publishers)

End devices provide data in multiple formats

Data Access

Direct access to generated data is inadequate

- End devices have existing communication channels to proprietary cloud systems
 - Some have APIs (REST or otherwise) to cloud systems
- Sampling intervals are not uniform and in order of several minutes
 - Data may not be timestamped
- Accessibility is limited to manufacturer and device owner
 - Upstream (commercial cloud, utility ADMS/DERMS) communication limited
- Temporal resolution and type of data is not sufficient for situational awareness
 - External sensors may be required

Power & Energy Society*

Data Storage

Local database and management missing

- Produced data must be consumed immediately no (limited) local storage
- Data management insufficient for robust DER control
 - Historical data cannot be queried
 - Minimal data management for device operation, interaction with subsystems, or local interfaces

Edge Intelligence

Local computing capabilities non-existent

- Interface to end device intelligence limited to parameters and configuration
- Capabilities limited to manufacturer provided platforms
- Limited built-in analytics
- Little to no cybersecurity or physical security

Edge Intelligent Devices

High Solar Penetration Distribution Grids

Intelligent Edge Platform

Open technology platform solution

- The edge platform acts as an interface between intelligent end devices and utility/open cloud
- Use open software standards
 - IEC61131-3 and real-time capabilities
 - Support for high level languages (Python, C++, MATLAB) Advanced analytics
 - Open Linux OS Support for containers
 - Advanced cybersecurity
- Vendor agnostic hardware platforms

Edge Platform

EID Feature Comparison

Feature	Utility Data Concentrator	EID
Ruggedized industrial hardware	\checkmark	\checkmark
Multi end device (DER) hardware interfaces	\checkmark	\checkmark
Cloud communication channels	\checkmark	\checkmark
Digital and Analog IO	\checkmark	\checkmark
IEC61131 – Real time and industrial automation	\checkmark	\checkmark
Local storage historian	\checkmark	\checkmark
Standard utility/industrial protocols	\checkmark	\checkmark
Protocol conversion	\checkmark	\checkmark
Time synchronization – GPS, NTP, PTP	\checkmark	\checkmark
Machine-to-machine (peer) communication	\checkmark	\checkmark

EID Feature Comparison (Cont.)

Feature	Utility Data Concentrator	EID
IT firewalls and user authentication	✓	✓
NERC CIP and CAISO RIG certified	\checkmark	×
Open platform – Linux OS access	×	✓
High level language support – Python, C++, Matlab	×	\checkmark
Use open-source libraries, containers, and software	×	✓
Protocol development e.g., IEEE 2030.5, non-standard, or future	×	\checkmark
Intrusion and anomaly detection – OT cybersecurity	×	✓
IOT protocols for cloud (AWS, Google, Azure) integration	×	\checkmark
Vendor agnostic COTS platform	×	\checkmark

EID Hardware Proof of Concept

- COTS (Commercial Off-The-Shelf)
 - Proven long life in multiple installation environments
 - Repairable system
 - Easy maintenance
 - Adaptable and scalable

PLCNxt® from Phoenix Contact

EID Software Architecture

Edge Intelligent Device (EID)			
Communication Module			
Modbus	DNP3	MQTT	
ProfiNET	JSON	SSH	
Grid Application Module			
Aggregator	Time Sync	M2M	
Data Logger	Analytics		
Cyber-Physical Security Module			

Vendor Agnostic

UL508A Industrial Control Panel

- UL Listed
 - Accepted by AHJ and utilities
 - Field installation ready
- US \$2000 sell price
 - Per distribution transformer

Thank You

Dr. Devarajan Srinivasan srini@poundra.com

