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Motivation of Data-Driven Outage Time Prediction

. Power outages have significant impacts on production,
transportation, communication, and health supply
service, resulting in significant economic losses.

. In recent years, customers experienced longer outages.
In 2018, each customer lost power for around 5.8 hours.

. In February 2021, the state of Texas suffered a major
power crisis, more than 4.5 million homes and
businesses were affected.

. From the customer’s perspective, the most important
and concerned information is timely and accurate outage
recovery time prediction, which will greatly help them
plan for subsequent arrangements in advance.

Source: https://www.eia.
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Accelerated failure time
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Severe weather records model Estimate duration of historical outages Data distribution assumption,
. uses only weather data as variables,
_ Bayesian prediction : o : _

[2] Radar observations data algorithm Provide an estimation of outage duration limited data source
Historical outage data . . D . Single global model, each outage

i Predict repair and restoration time with i )
[3] with severe weather Deep neural network recovery is treated as an isolated

respect to severe weather events
records process

» Challenges:
» QOutages occurring together in a time period can impact restoration time; previous studies ignored the
correlation among overlapped outages.

» Outages may have different scales (i.e., a couple of minutes to several hours) and unbalanced

distributions (i.e., some scales are rare); previous studies trained a single model for the entire dataset,
which may cause an overfitting problem.
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* The available outage reports are recorded by a utility provider located in the U.S., including over
16,000 outage records over a six-year period (2011 ~ 2016).

* The initial outage data features include:
e Start and end time (accurate to seconds resolution)
e Qutage locations (latitude, longitude)
* Numbers of customers interrupted
* Repair and Restoration time (accurate to seconds resolution)
Causes (i.e., animal, tree, connector failure)

D)

Tree/leb In
Dec1, 2012 Decl, 2012
3:21:00 AM  11:31:00 PM 126 XXX XXX 2,010 B 0001 Connector Clearance
Zone
Dec1,2012 Decl, 2012 Systemn Animal,
3:39:00 AM  6:56:00 AM == XXX = 317 N 0006 Failure Squirrel

Dataset visualization with sample entries
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e QOutages mostly occur during summer and fall.
 There are 63 causes, categorized as vegetation-related, animal-related, and equipment-related.

 The collected severe weather report has transferred to 8 discrete codes.

Tropical
storm

Breakdown of the outage causes - Total of 63 causes . Normal
Winter
weather

January [ SOl condition
February [N
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rpril [ Severe

Weather
Code

september [N High wind
S —

Novernber

December [
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Real-World Outage Dataset - Analysis
e Qutages can have overlapped time periods. We considered
H . H H P H QOutages
a new training feature: cumulative number of coinciding 40118 m Outage records
outages (i.e., the quantity of outages presented at a certain Os‘tjjie O:rfzfsv’e
time period that has not yet been resolved). | | |
| | |
| | | | | | |
t; t; t;
Coutages = o ~ Cr (1) o | L
N . | | | | | | |
where is the ¢, cumulative total outages at time t;, ¢, is the L | | | L |
. . . t; .
cumulative total restorations at time t;, and ¢4, 5¢5 i the : : : : : : : :
number of coinciding outages at time ;. | | | | | | |
| | i i i | |
| | | | | | |
* The cumulative number of customers interrupted is also L1 - ) C"ti.“"id;“g."g?algezs count for each
. Time perio me period: 1, 2, 3, 4, 3, 4, .
considered as a new feature. ’ Time

Example of the cumulative number of coinciding outages
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Methodology
We propose a multi-stage framework to estimate the (" oo outge ot @
restoration time in a cluster-wise manner: é@’g -
—— Clustering Phase
» Dataset clustering to deal with the data ’”"“c‘-‘g"“
imbalanced distribution problem. = J
L
* Find the optimal subset with the highest average Find Subset with Highest T —
Average Similarity Amon,
similarity with other subsets to train an initial ol UG | Transfer Leapring Srategy
ANN model. ( 2 : I
. . . . Hpdate I.-ly[.)er!:)arameters Train Initial ANN Model Initial Model Time Prediction
 Update hyperparameters and similarity index @ %
based on the trained model. Use the trained |
model as a source for the next training session. T’a""‘“"""°"E'W"h°*he"“b““
* Each of the other outage subsets is assigned with ) % @
an ANN to predict restoration time.

\ -




Outage Pattern Discovery Using Cluster Ensembles
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 The sparse dictionary-based ensemble spectral clustering (SDESC) is leveraged to cluster the dataset.

* Unlike k-means, spectral clustering can better handle high-dimensional data and is robust against data
noise.

* In SDESC, the sparse coding technique greatly decreases the complexity and cost of practical
implementation.

e Algorithm summary:

Step I: The high-dimensional dataset is factorized into a low-dimensional dictionary matrix and a
representation matrix.

Step Il: The similarity between different data points is used to distinguish data partitions in a graphical
manner.

Step lll: Solve the graph partition problem according to the optimal value of clusters.

Step IV: The optimal value of clusters can be determined by various clustering evaluation metrics such
Davies-Bouldin validation index (DBI).
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A transfer learning strategy discovers outage features and R
structures under different but related subsets. %@
Similarity
evaluation

* The transfer learning firstly gathers features and the t

output (i.e., actual restoration time) in the pre-trained 4

model, and stores them as a source task.

@ |( Learning tasks 1, 2, ...
alc

Learning matrix 1,2, ...

)

Source task

Ei

Knowledge matrix

* In this study, learning tasks are the training assignments
of each outage subset, by exploiting the similarity
between the learning task and the source task, the e e e
learning parameters can be updated for training a new
prediction model.

e e e e e e e B e

\-—K—_____
-
T

( } A trained model becomes the next initial source task

to train a new learning task

@ Update learning parameters and fill learning matrices

to get the prediction of outage restoration times

The learned model can be utilized in a recursive manner
when dealing with a new learning task.
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Numerical Results — Clustering Summary e

* Using feature selection and clustering metrics m Avg. CI Avg. RT
evaluation, the dataset consists of 10 features (i.e., (min)

customer interrupted, cumulative outages, cause, 2379 740.5
and weather information) is clustered into 4 subsets CZ 5302 21 288.4
using the SDESC algorithm. Cs 2884 16 144.5

Cy 5872 22 82.2

* Collected high-precision weather-related data from
the National Oceanic and Atmospheric
Administration (NOAA) :

* Hourly temperature

* (4 refers to severe outages with higher Avg. RT
and Avg. Cl, but relatively infrequent.

* C, and C4 represent intermediate and least

* Hourly wind speed serious outages, which are twice as frequent as

* Hourly precipitation severe outages.
* Severe weather reports e (4 represents a subset of minor outages, which
 Weather data aligned with each outage data record occur frequently but can typically be resolved in a
based on the start time. timely manner.

Cl: Customer interrupted RT: restoration time

Source: https://www.ncei.noaa.gov/products/severe-weather https://www.ncdc.noaa.gov/cdo-web
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* The similarity index (ranged 0-1) among different data subsets is calculated by a cross-validation
principle with an unsupervised process.

Similarity Index (%) Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 with... 17.7 18.6 26.2

Cluster 2 with... / 49.8 58.7
Cluster 3 with... 49.8 / 52.3

Cluster 4 with... 58.7 52.3

* Average similarity with other subsets:
e Cluster 1: 20.83%
* Cluster 2:42.06%
* Cluster 3:40.23%
* Cluster4:45.73%

Similarity Index: 0 means no similarity between two samples, and 1 means two samples are the same.
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Numerical Results — Clustering Visualization
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* t-SNE [4] for high-dimensional data visualization and enhancing the overall interpretability of the framework.
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t-SNE plot of clustered data using the proposed SDESC method
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t-SNE plot of clustered data using the advanced k-means method
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Numerical Results — Time Estimation Q|
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Example Results between actual and predicted restoration time for the learning tasks (C; , C, , C3)

1o I -IActual -Predicteld

100} v' C, is chosen to be the source task based on the similarity evaluation.
2 90 v Other training tasks are utilizing the pre-trained model C,.
£
=
g v" Only 3% of the total predicted time is more than 60 minutes of the
| actual restoration time.

60 -

30 5 10 15 20 25

Outage
Example Results between actual and predicted restoration time for the source task (C,)
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Numerical Results — Comparison

60 T

90 e |-With Tra}lsfer Learning BWithout Tra;lsfer Learning\
Random Forest
Support Vector Regression sol i
—~ 85+ Gradient Boosting Machiner MAPE Improvement
2 Our Proposed Method 52.98%
N’
3‘ 80+ 40 MAPE Improvement i
s ~ 9.59%
2 e
[ = 30 T
< 75 : MAPE Improvement
= = 27.26%
2
S 70t 07 I
=
o
=
~ 65t 101 ,
60 . . 0 Cluster 1 Cluster 2 Cluster 3
. _ Prediction Methods o Prediction of restoration time with and w/o transfer learning approach
Comparison of prediction results with three existing methods 80 . R Clustor-wise Model BEGlobal Model
\/ . . . . 4. 70\~ MAPE Improvement MAPE Improvement MAPE Improvement
We have conducted numerical comparisons with three existing 15257% 132.76% 393.78%

works [5-7] (left figure) and global models without transfer
learning and cluster-wise strategies (right figures).

MAPE(%)

v' The proposed method can outperform the previous works. Also,
the combination of transfer learning and cluster-wise strategies
have proven to be valuable. The largest MAPE improvements are
393.78% and 52.98% respectively for implementing clustering
and transfer learning strategies.

Cluster 1 Cluster 2 Cluster 3
Restoration time comparison between cluster-wised model and global model
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Conclusions

* Accurate outage restoration time predictions will greatly help customers and utilities plan for
subsequent arrangements in advance.

* The proposed method estimates the restoration time in a cluster-wise manner to deal with the
uncertainty caused by the heterogeneity of outage events.

* The transfer learning embedded framework solves the data imbalance problem caused by the
data scarcity of the specific outage patterns.

* The results show that the proposed method has improved performance compared to existing
methods and overcome large-scale data challenges.
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