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Zero, One, and Everything in Between 
Role of Quantum Computing in Shaping the Future Electric Grid





Our Focus 
Research on Microgrids: Launched in 2012. 
Contributed to the research, development, and 
implementation of the first cluster microgrid in 
the US (BCM-ICM)

Research on AI: Launched in 2015. Focused 
on AI applications in grid resilience and 
advanced distribution management 

Research on QC: Launched in 
2019. Sponsored by electric 
utilities and the State of Colorado. 
Aimed at discovery, modeling, and 
simulation of practical electric 
power grid use cases 



Future 
Electric Grid 



Electric grid is challenged 
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Reimagining the grid 

Grid is being 
reimagined
Need to evolve 
planning and 
operations
Need to rethink 
technological 
capabilities

Call for improved 
capabilities
Existing analytical and 
computational 
capabilities may fail to 
address these needs, 
hence slowing down 
the pace of grid 
modernization

New analytics and 
computation
Needed to equip 
utilities to continue 
providing safe, 
reliable, resilient, 
affordable, and clean 
electricity to 
customers



“

“

The computational tools must be designed to 
formally ensure that the analytics is capable of 
comprehensively simulating the physical phenomena

US Department of Energy conference on Computational 
Needs for the Next Generation Electric Grid, 2011 

The future grid will rely on integrating 
advanced computation and massive data to 
create a better understanding that supports 
decision making

Analytic Research Foundations for the Next-Generation 
Electric Grid, National Academies, 2016

More public-private partnerships are 
needed to advance quantum information 
science to the point where it can optimize 
the U.S. power grid

DOE’s commercialization executive, 2022

“



In the News



Who is investing?
Company Sector Application Quantum platform 

NASA Aerospace Battery scheduling Google, D-Wave

German Aerospace Aerospace Battery and fuel cell design IBM

Mitsubishi Automotive Battery design IBM

Daimler AG Automotive Autonomous vehicle design Google, IBM

Volkswagen Automotive Traffic and travel management D-Wave

Hyundai Automotive Battery chemistry design IonQ

Samsung Electronics Battery performance improvement Honeywell

ExxonMobil Energy Fleet management of merchant ships IBM

JPMorgan Chase Finance Financial modeling IBM

Japan’s Railway Transportation Optimizing train operations Hitachi

ENEL Utility Optimizing crew mobilization D-Wave

E.ON Utility DER coordination IBM



Quantum 
Computing 



Quantum Computers 

A quantum computer is a machine that performs calculations based on the laws of quantum 
mechanics, which is the behavior of particles at the sub-atomic level.

a fundamentally different paradigm for processing information, that can potentially outperform 
classical computers for specific classes of problems.

Laser vs. Lightbulb! 



History 

20232020201120011998199419851982

Richard Feynman 
proposed the idea of 
creating machines 
based on the laws of 
quantum mechanics 
instead of classical 
physics.

Peter Shor came up 
with a quantum 
algorithm to factor 
very large numbers in 
polynomial time.
Shor's algorithm could 
theoretically break 
many of the 
cryptosystems in use 
today.

First working 7-qubit 
NMR computer 
demonstrated at IBM's 
Almaden Research 
Center (First execution 
of Shor's algorithm).

IBM and Google 
reached 65 qubits. 
IonQ reached 32 
perfect qubits. D-
Wave reached 5000 
qubits. 

David Deutsch 
developed the 
quantum Turing 
machine, showing that 
quantum circuits are 
universal.

First working 2-qubit 
NMR (nuclear 
magnetic resonance) 
computer 
demonstrated at 
University of 
California, Berkeley.

D-Wave Systems announced 
D-Wave One, described as 
"the world's first 
commercially available 
quantum computer", 
operating on a 128-qubit 
chipset using quantum 
annealing.

IBM is expected to 
build a 1000-qubit 
machine. 



Quantum vs. Classical 

BITS
The fundamental difference 
between a classical computer 
and a quantum computer is on 
how they process information: 
bit vs qubit

QUBITS
The qubit state can be 
mapped onto a point on the 
surface of a unit sphere, 
called a Bloch sphere. 

⟩𝜓 = 𝛼 ⟩0 + 𝛽| ⟩1
|𝛼|! + |𝛽|! = 1



Fundamentals 

Entanglement Superposition

A single qubit can be 
forced into a 
Superposition of the two 
states denoted by the 
addition of the state 
vectors:

⟩𝜓 = 𝛼 ⟩0 + 𝛽| ⟩1
|𝛼|! + |𝛽|! = 1

A strong correlation 
between quantum 
particles, to the point that 
two or more quantum 
particles can be inextricably 
linked in perfect unison, 
even if separated by great 
distances. 
(spooky action at a distance!)

For N bits, there are 2N possible classical states. 
A classical computer can represent only one of these N-bit states at a time. 
A quantum computer can be set into a single superposition state that may simultaneously carry aspects of all 2N components. 
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The quantum 
community is 

searching for its 
“transistor”

Source: Michel Kurek
Linkedin.com/in/michelk
urek



Quantum algorithms and speedup

21 = ? × ? 
The runtime to factor a 30-digit number with a quantum computer is 30^3 = 27,000
The runtime to factor this number with a classical computer is 2^30 = 1,000,000,000

Shor's algorithm, 1994 

HHL algorithm, 2009 

Grover’s algorithm, 1996



Quantum speedup for grid security

IEEE 300-bus test system
300 buses, 69 generators, 304 transmission lines

Contingency analysis – Solved using the HHL quantum algorithm 

Contingency type N-1 N-2 N-3

# of times to solve power flow 373 69,000 8.5 million

Computation time (classical) 37 s 2 hrs 10 days

Computation time (quantum) 0.3 s 0.5 s 0.7 s

Eskandarpour et al., Quantum computing for enhancing grid security, IEEE Transactions on Power Systems, 2020

Computation time comparison (theoretical)



A Practical 
Application 



Late bloomer
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Unit commitment 

Definition
Given a set of generation units with unique costs and capacities, determine the least-cost 
generation schedule to meet a forecasted demand

Significance 
Reduced electricity costs. The system operators 
sacrifice the optimality for a faster, practical solution

Improved reliability. A faster UC solution can examine a large set of 
generation uncertainty and failure scenarios to schedule units

Lowered emission. Streamlined integration of renewable resources 
(large-scale and DER), resulting in environmental benefits



Unit commitment 

Minimize Total generation cost
s.t. Load balance 

Unit capacity limit 

How to make it quantum-compatible?

1. This should be converted into Quadratic Unconstrained Binary Optimization (QUBO): 
Minimize Total generation cost + A*Unit capacity limit + B*Load balance 

where A and B are penalty coefficients 

2. Continuous variables must be handled (cannot be included in the QUBO model)  



Approach 1
Approach 1: Discretizing continuous variables. Considering N segments with similar sizes 

• Each segment will have a size of (MaxCapacity – MinCapacity)/N
• One binary variable will be assigned to each segment

Example: MinCapacity = 0, MaxCapacity = 100

N=2  à p = 50*z1 + 100*z2 
N=4  à p = 25*z1 + 50*z2 + 75*z3 + 100*z4
N=8  à p = 12.5*z1 + 25*z2 + 37.5*z3 +     …        + 100*z8

• This formulation gives very accurate results, if N is large. However,
• A large N increases both the number of segments and the number of binary variables, z
• As N increases, computation time significantly increases



Approach 2
Approach 2: Discretizing continuous variables, using the Power of 2

• n = log2(N), where n is the number of binary variables. N must be an exponent of 2
• Each segment will have a size of (2^(i-1))*(MaxCapacity – MinCapacity)/(N-1), i=1,…,n
• One binary variable will be assigned to each segment

Example: MinCapacity = 0, MaxCapacity = 100

N=2  à p = 100*z1
N=4  à p = 33.3*z1 + 66.6*z2
N=8  à p = 14.28*z1 + 28.57*z2 + 57.14*z3

• Multiple segments and binary variables can be active at once, reducing the need for as 
many variables as in the first formulation

• Results in significant reduction in computation time



Comparison
Approach 1

N
Units

Total No. Binary 
Variables Time (s)

1 2 3 4 5 6 7 8 9 10
2 455 455 130 130 162 80 85 0 0 0 1497 30 6.79
4 455 455 102.5 130 162 80 85 0 0 32.5 1502 50 16.05
8 378.75 455 116.25 116.25 144.87 57.5 55 55 39.375 55 1473 90 43.84

16 435.94 455 123.125 116.25 93.5 76.3 62.5 32.5 43.75 43.75 1483 170 131.586
32 450.59 357.18 112.81 123.13 149.16 80 81.25 36.72 49.38 40.98 1481 330 425.443

Target 455 455 130 130 162 80 25 43 10 10 1500 - -

Approach 2

N
Units

Total No. Binary 
Variables Time (s)

1 2 3 4 5 6 7 8 9 10
2 455 455 110 110 137 60 60 45 45 0 1477 20 3.69
4 455 455 110 110 162 40 40 30 30 30 1462 30 7
8 455 455 94.28 94.28 162 51.42 76.42 25.71 25.71 25.71 1466 40 10.99

16 455 455 88 88 152.86 68 73 24 24 24 1452 50 13.83
32 445.16 445.16 99.35 105.16 148.74 66.45 71.45 23.22 23.22 23.22 1451 60 17.3

Target 455 455 130 130 162 80 25 43 10 10 1500 - -



Observations 

There is always a level of inaccuracy in the results 
• Since constraints are converted into penalty terms and added to the objective
• It can be resolved by fine tuning the penalty coefficients 

Continuous variables cannot be directly considered 
• Should be converted into binary variables
• Significantly increases the computation time (adding many additional binary variables) 

If the problem can be efficiently modeled as BQM, it could potentially outperform classical solutions
• Very effective in binary optimization



Approach 3
Hybrid quantum-classical solution



Approach 3
Decomposes the original problem into several problems (BQM and LP/NLP) 
BQM is solved by D-Wave (as it only has binary variables), and LP/NLP are solved by a classical solver 
(as they only have continuous variables). Solution found iteratively. 

Units Quantum Comp Time MINLP Comp Time Absolute Relative Error %
10 3.012 0.025 1.01E-08
20 3.003 0.077 3.564
30 3.006 0.048 4.217
40 3.002 0.071 5.299
50 3.005 0.097 5.301
60 3.004 0.129 9.523
70 3.005 0.126 10.676
80 3.007 0.178 9.660
90 3.007 0.157 12.742

100 3.008 0.361 12.511
150 3.003 24.478 13.407
200 3.008 75.990 16.299
250 3.056 276.916 17.330
300 3.025 8927.573 16.504



Takeaways

Grid is changing, so 
should its decision-
making
Electric power grid is facing 
unprecedented challenges 
and is undergoing major 
transformation. Enhanced 
analytics and computation 
are of paramount 
importance.

Legacy solutions may not 
work anymore
Applying the same 
mathematics on more powerful 
computers may not provide the 
answers we are looking for. The 
historically-common 
simplifications and 
approximations may fail to 
support grid management.

Quantum computing 
is here to stay
Although a few years away 
from error-corrected 
large-scale quantum 
computers, now is the 
time to investigate 
quantum applications, 
especially for the power 
sector. 



Questions?
amin.khodaei@du.edu


