

PMU Data Analytics for Power System Planning and Operations

Neeraj Nayak Electric Power Group (EPG)

Outline

- Introduction
- Automated Event Mining Automated PMU Data Analysis
- PMU Data Analytics Use Cases for Planning and Operations
 - Oscillation Detection and Monitoring
 - Asset Health Monitoring
 - Automated Generator Model Validation
 - Linear State Estimator
- Q&A, Discussion

Introduction

- Utilities, ISOs and RCs have Terabytes of Synchrophasor data being archived
- High-resolution (30 frames/second or higher) and time-synchronized data from PMUs
 provides unprecedented visibility into grid dynamics
- Need for PMU Data Analysis
 - Extract value from large archives to guide planning and operations
 - Assess Grid Performance
 - How Many Events: Where, When, How Severe?
 - Identify weak spots in the grid to guide capital investments and update operating procedures
 - Identify indicators of potential equipment failure and device malfunctions
 - Validate and Set Alarm Thresholds for Real-Time Operations

Automated Event Mining (AEM)

Automated Analysis of Large amounts of PMU data (weeks, months, years)

- Oscillations
- Generation & Load Trip
- Faults
- Line Trips ٠
- Extended Low voltage events including FIDVR
- Device Calibration Issues •
- Equipment Failure
- Grid Stress (Phase Angle **Differences**)

declined to

Potential Transformer (PT) Failure

Device (PT, CCVT) Calibration Issue

Architecture - Overview

Data Sources

Visualization

Reports

Events By Date and PMU Location/Substation

Frequency and Voltage Events

3

Oscillations

Count of Detected Oscillation Event

Power & Energy Society*

Value of Grid Performance Analysis for Planning & Operations

• Planning & Operation Management

- System dynamic performance assessment
- Identify emerging problem areas that threaten reliability
- Actionable Information to guide goals and programs

• Operations Support & Analysis

- Assessment of Events using multiple perspectives such as time-of-day, season, severity, etc.
- Identification and Analysis of Oscillations for improved monitoring and mitigation

• Planning & Modeling

- Identify Weak Spots in the system to guide capital investments
- Support Model Validation using PMU data
- PMU Engineering
 - Verify Event detection and Alarm operation, fine tune Alarm thresholds
 - Identify unreliable Equipment and measurement system problem areas

PMU Data Analytics - Use Cases for Planning & Operations

Oscillation Detection and Source Location

Linear State Estimation for Grid Resiliency

Generator Model Validation

Oscillations Monitoring

Asset Health Monitoring

Oscillation Detection and Monitoring with Synchrophasors

- Oscillations may reveal issues in the power grid, may causes equipment damage and in severe cases system wide oscillations could cause backouts (e.g., Aug 1996 in Western Interconnection)
- Monitoring Natural System Oscillations (Mode Meter) Continuous Monitoring of Natural Oscillation Modes and their damping
- **Oscillation Detection** Quick and Accurate Detection of forced Oscillations
- **Oscillation Source Location** Identify source of oscillations such as source region/area or generating power plants

Oscillation Detection & Monitoring

Severity

Natural : Damping

Wide-Area(0.15-1.00 Hz)

Wide-Area

Local

130 MW peak

to peak

amplitude

Low Damping

- Forced Oscillation from Generation Plant
- Contact Plant Operators
- Generation Redispatch
- Check Controller Settings

Source Location (Identify Source Area or Source Generator)

Root Cause Diagnosis and Remedial Actions

Asset Health Monitoring

Using PMU Data to detect precursors to Equipment Failure

- Transmission Equipment is Aging
- Failures of substation equipment have led to damage and/or explosions at substations, compromising personnel safety, affecting reliability, and causing outages
- Instrument Transformers such as PTs, CTs, and CCVTs are not monitored in substations
- Electrical Signatures in PMU data can be analyzed in real-time to detect precursor to equipment failure

Source: Qiushi Wang et. al, 'CCVT Modelling Failure Mode Investigation and Impact on Relay Operation', CIGRE-US, 2020.

PMU Data for Detecting Equipment Failures

- 1) NASPI Technical Report, "Diagnosing Equipment Health and Mis-operations with PMU data", May 2015
- 2) Bogdan Kasztenny and Ian Stevens, "Monitoring Ageing CCVTs Practical Solutions with Modern Relays to Avoid Catastrophic Failures", March 2007
- 3) David Shipp and Thomas Dionise, IEEE Tutorial, "Switching Transients, Transformer Failures, Practical Solutions", Feb 2016

Automated Generator Model Validation (AGMV)

- Inaccurate models can lead to incorrect assessment of system response
- Traditional staged tests require generators to be taken out of service, can be expensive and time consuming
- PMU data can be used to validate models without taking units offline
- Can be repeated frequently for multiple event types
- Automated Process to validate models and assess performance

Linear State Estimation

Extending PMU Observability and Improving Grid Resiliency

Challenges	LSE Solution
State Estimator Not Solving	Always Solves
Iterative and Slow (every few minutes)	Linear Solution, Solves at sampling rate (25 or 50 frames/sec)
Data Quality	Real-time data conditioning
Costly PMU Deployment	Expands Real-Time Observability beyond current PMU coverage
Grid Resiliency / Independent from EMS	Provides backup to EMS resulting from equipment failure, physical and cyber attacks

Measurement Estimation Addresses Data Quality issues in Real-Time

alean One Line	EPG One-Line	Dagram Carrow						
Dervice Dist.	Formal Bank	Total Units		Enterth	a	Embrell Uhde		
	The STATE AND A CONTRACT OF STATE	1000 002000 1000 043000 1000 0400 000 042010 0400 0400 0000 012010 0400 0400 0000		227 A 122 Misk 1 444 MW 1 42 MW	220 A 126 Stun 1 111 Stor 7 8 St Stor 9	207 A 22 531 894A 12 156 89W 7 953 62 89V * 64	5 A 6 STAR 1 MW 1 STV	
			Votage Hageture 101 4024 Votage Argo: 0.12573 Votage Hageture 201 4024	2 KV	+			1
			0099-102011	¢α	CB 13 311 A		CB-36 521 A	CB 29 295 A
an an					(834 117 A		CB 37 289 A	
- F	-		, in the second se		CB 35 263 A		CR 38 482 A	CH 41 40 A
				356 A 103 MVR • 015 MVV	295 A 917 Mile 113 Mile	855 A 80 345 874A 34 335 88W * 335	6 A 257 A 2 MUA 345 MUA 1 MUY 1 10 MUA	965 A. 340 HVA * 344 HV4
Aven Boss	without the				A540			1

Source: L. Zhang *et al.*, "Benefits of using linear state estimation for synchrophasor applications," 2017 IEEE Power & Energy Society General Meeting, 2017

THANK YOU