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Situational Awareness is Key!

Most grid operators lack either visibility or control of behind-the-meter devices
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Exploiting Information for system situational awareness
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Information is Power! \ fops |

Utility standpoint

Have less than what we would like

Lack visibility or control of BTM devices
Collected data is in different databases

Data is collected at different time scales

Data collected may not be consistent/reliable

Data is not used for operational purposes due to the delays
involved
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Grand Challenge \ (eps.

We may never have the quantity or the quality of data we

need for complete situational awareness at the grid edge.
Can we do more with less?
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Distribution system state estimation (DSSE)
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Doing More with Less! \ —

Integrating multi-timescale measurements

Integrating Topology and Phase Identification
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Distribution grid is unobservable \
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Currently few measurements are
available

Theorem 1: If there exists a vertex-disjoint set of @

1 al . - | : Fisl al - |

[
(9
Question 1: How to estimate the states using a small number of
measurements?

Question 2: How robust are the estimators to bad data, system uncertainties
and cyber attacks

network/data processing
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Sparsity-based state estimation

Sparsity

Slow load Geographical based DSSE
ow loa
and PV proximity of appll’oaches
variations nodes
{} ‘ ‘ Static Dynamic
|
Spatial
Tempor.al Correlation in |
Eelation PV generation Spatial Spatio-
temporal
{} | I
Matrix
Sparsity Sparsity 1-D CS [1] 2-D CS [1] Tensor

Completion [2] completion [3]

Sparsity in distribution systems Sparsity-aware DSSE approaches
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Estimate the signal of interest x € RN from compressed measurements y € RM (M < N)

min|ls|ly + vy — @¥s ||
N subject to:
K-sparse IlV-—AP+wl|;<e€

- A

1 s : Sparse signal
w = _ZLL YioVo B y : Compressed measurement
M = (YZleiag(V), —jYZleiag(V)) (Power and Voltage (P,V))
@ : Measurement matrix
1 : Sparsifying matrix (e.g., wavelet)

Y Y
Y = [ 00 OL] Admittance Matrix
Yo YL
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Matrix completion based DSSE \ o= |

| : :
X=[P Q Re(V) Im®WV) |V|] < . Matrix of interest

Xi; (i,j) € Q
0 otherwise Only a sampled set of entries
X;;,(i,j) € Qare available.

—

:- | m | . 5 i

i = g GOAL: recover the

o unknown entriesinY
|

J.F. = .-. L min I X1 +24; 1Y — Po(X) 17 1
I subject to v=Mz+w
Measurement Complete Matrix

(Incomplete) Matrix
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When, we have different matrices of interest across time:

M=[M, M, ... M,y M,] <: Tensor of interest

Y 3
idtn. = min. | > Bl
" Coupled Matrix i=1
subject to:
. Complete D
Incomplete Data ‘ omplete Data P, ( xi) —p, ( Mi)
GOAL: recover the Vi=AP;+W

unknown entries in M Bi - positive constant value.

Suffix i denotes the unfolding
operation along the mode i
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Sample Simulation results

Comparison of Sparsity-based DSSE - 1D- Compressive Sensing and Matrix Completion based DSSE
approaches [4]

Voltage angle estimation- 1D and Matrix Completion

Voltage magnitude estimation- 1D and Matrix Completion 102
—&—1DCS —&—1D CS
—&— Matrix Completion —&— Matrix Completion
q
10"}

107

INAE (%)
MIAE (%)
L SD

D 10 C\
2| i

90

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80
CMR (%) CMR (%)

Key observations-
Estimate system states accurately even at 30% of available measurements.

* Compressive sensing exploits sparsity of a signal, hence performs better than Matrix completion

R. Madbhavi, B. Natarajan and B. Srinivasan, "Enhanced Tensor Completion Based Approaches for State Estimation in Distribution Systems," in IEEE Transactions on Industrial Informatics, vol. 17, no. 9, pp. 5938-5947, Sept. 2021
[4] Dahale, Shweta, Hazhar Sufi Karimi, Kexing Lai, and Balasubramaniam Natarajan. "Sparsity Based Approaches for Distribution Grid State Estimation-A Comparative Study." IEEE Access, (2020): 198317-198327.

Alam, SM Shafiul, Balasubramaniam Natarajan, and Anil Pahwa. "Distribution grid state estimation from compressed measurements." IEEE Transactions on Smart Grid 5.4 (2014): 1631-1642.
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Distribution system state estimation (DSSE)

Integrating multi-timescale measurements
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Doing More with Less! \ —

Integrating Topology and Phase Identification
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Multi-time scale data issue

Customer
Electricity

4 IEEE

How to reconcile the
heterogenous measurements
and estimate states in low-
observable distribution

systems?
AU /

AMI

sampled af
5,15,30,60
minutes

Phase angle

MicroPMU

SCADA

Sources of

Infermation in
Smart sampled
sampled at Distribution - befwee: Isec —
120/sec Systems

Tmin

Distributed
Generation

day ahead
forecasting

Sources of information in smart distribution systems
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Related work

 Authors in [5] incorporated a simple linear interpolation technique along-with Weighted least squares state estimation
technique.

e [6] uses historical timeseries data from smart meters to find kNN cluster centers and then use for imputation approach
to impute the time-series data.

* Approachin [7] uses a data collation method to reconcile heterogeneous measurements and a Kalman filter method to

perform DSSE. The data collation consists of an exponential moving average method to extrapolate the slow-rate
measurements.

Shortcomings

* Existing approaches do not effectively exploit the correlations among the time-series data.
* Requires large measurement redundancy and performs poorly in case of intermittent measurements.

* Do not provide uncertainty bounds on the imputed measurements.
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Proposed GP framework (ops

SCADA, PMU g £ Fo==m—mm———-——---o _ .
measurements KT sage2 | Bayesian matrix 1 Stage 1 — Multitask GP approach.
Y= . | — [ . .
2 ' completion based : Stage 2 — Bayesian matrix completion based DSSE.
Eg .
a E Stage 1 A N D _S_S_E _______ :
ettt Hntiil |
rainin, | T .
oo N\ ataser, Train GP ! » Stage 1 reconciles measurements at
dataset v vperparameters | . . . .
£ T ! finest time resolution and provides
53 . Trained ! uncertainty bounds
a 'E_ : parameters |
T wm . . s |
Smartmeter N rectaaset] Mulitask GPprediction  [congistent ! « Stage 2 incorporates the measurements
A . n | timeseries : . .
5 e S and the associated uncertainty to
5 2 estimate the system states in low-
<E observable distribution systems.

Proposed GP Framework [8], [9]

[8] Dahale, Shweta, and Balasubramaniam Natarajan. "Multi time-scale imputation aided state estimation in distribution system." 2021 IEEE Power & Energy Society General Meeting (PESGM
IEEE, 2021

[9] Dahale, Shweta, and Balasubramaniam Natarajan. "Bayesian Framework for Multi-timescale State Estimation in Low-Observable Distribution Systems." IEEE Transactions on Power
Systems (2022).
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Stage 1: Multitask GP approach o

* Gaussian process (GP) is defined as a collection of random variables, any finite collection of them has a joint normal
distribution.
* @GP prior function is defined over time for each measurement as,

f(x) = GP (g (x:), ko (x1, %))
where, m¢(-) is the mean function (e.g., deep neural network)
kg (:,) is the kernel function (e.g., radial basis kernel function)

P prior
parameters 1) =
{¢, 0} optimized

Y b i |
. y maximizing log
Inputs: M ) .
- = marginal

* Incomplete Training dataset M - {xi,}’i}fﬂ P o erer If(x) / Iikeliiood

P, Q measurements sampled Test dataset D = {¥;, ¥, ¥ }ieq | 9 (m¢ (x3), ko (xy, x; )) 2 .

at 15-min interval Likelihood - y(x) ~ M (f(x),6%) | ([
* Incomplete V measurements /

sampled at 1-min interval W = {¢, 6}
Output: Goal: Predict {¥;"}/_, using ¥; and ¥; and GP T G = Ml e
* P,Q, Vmeasurements prior parameters. D PU; |Xi,?(;Y) N ~£m ' *3 xx 21\ -1(o -

obtained at finest time | where m"=my(X") + Kg" (Kz~ +0° )™ (§ — my (X))

. . . K* =K, — K;*(K}* + a?I)"Y(y — K}*
resolution along-with their o o (Ko ) —Kg")
variances.
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Stage 2 -Bayesian Matrix completion baseN s | @
DSSE
PR M measurements——»  A) Observation and noise models
Re(V) Imag(V) |V =
I D = Po(X+N) GP output —D and 8
&;— wonm— ] oo
% (L,))eq
z - B) Low-Rank Modeling
l - X=ABT =YK abl — X=USVT.SetA= USZ and BT = §1/2yT

« pAly) =T M@0,y 'Ly,)  * PBIY) =Tz, M(b,10,7; ')

+ p(yy) = Gamma(a,7)

C) Obtain an estimate of A, B and y by using the joint probability distribution given as,

| p(DAB,y) = p(D|ABPAPBIIPG) | — loint probability distribution
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Simulation results IGres | 9

-1 ! 37
{
26 ¥ 1. o |
ol sUss 2 Timeseries Imputation
L~ 27 I I 28 29
[ - 32 15001 Prediction mean
" 25 3 . .
30 * Training points
& 31 33 —— Ground truth
4 Linear interpolation
: 34 10001 95% confidence interval
—_ A~ Feeag
Fast rate 19 E /ﬁ‘v/\\‘_-/
measuremen t /"
12 11 10 g 5004 “-—a\\ /."
17 . [} T g
13 24 >
2
15 14 2 o
16 . -
18 19
=500
IEEE 37 test system
Slow rate measurements — Averaged at 15 min 0 > 10 15 20 25

. Time (hr)
Fast rate measurements —Sampled at 1 min

| parameter | vave [l BayesianMC Data imputation of a slow-rate measurement timeseries at node 4

. initial
MLP layer Two hidden layer barameters
(size 64 each)
Activation RelLU Initial y 10e-5
c 10e-17
No. of epochs 20 onvergence e
criteria

Optimizer Adam
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g Power recovery 0.7 | Voltagle magniltude reql:«nvery | |
— P { —+—oGP
8~ —<— Linear | |
110 2|0 3|0 4|0 5|0 slo 7|0 8I0 90 10 20 A "*I” 5:” 5” Tlf' 80 20
FAD (%) FAD (%)
Power recovery performance at different FADs Voltage magnitude recovery performance at different

FADs

Key observations:
» State estimates using Bayesian matrix completion with measurements from multitask GP
approach performs better than linearly interpolated timeseries measurements.
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Multitask Recursive GP approach (]

e Recursively imputes multiple unevenly sampled measurements [10]
* Incorporate spatial information among measurements by leveraging graphical structure of the grid.

* A computationally efficient approach with the flexibility to perform batch-wise or real-time processing of
measurements.

[10] Dahale, Shweta, and Balasubramaniam Natarajan. "Recursive Gaussian Process over graphs for Integrating Multi-timescale Measurements in Low-Observable Distribution Systems
" |EEE Transactions on Power Systems (under review).
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Multitask Recursive GP approach (o

RGP-G/RGP Interpolation

RGP-G/ RGP Prediction ’

A. RGP-G Interpolation approach

Performs imputation after a batch of measurements in set time-frame node(p) —————— wiet® node 1 () /,/"\ node 1 (P) \/\
are received.
e 10— w1 w1 e rode (0 A

Initialize: GP prior function with zero mean and covariance . . . e
Inputs: Measurements received upto time T. nodeM(p) —————— nodeM(p) A~ mien®) —/ N mionp — N
Consists of two steps: oy T i@ e
a) Predict: Infer the joint probability GP function using measurements

received upto time t -1
b) Update: Update the GP function with new measurements received . b=0:p :20 ------ » t=1: “5,1’05,1 """" » t=15 “5,15' Cg,ls SRREEE t:T:“iT’ CQT

at time t using Kalman filter step Cp =Ky ®B') 9 K (36)(37) (36)(37) (36)(37)

A A A
' + predict ' '
« update

Output: Impute at finest time resolution using updated GP mean and

covariance function. Y15 yr

RGP-G interpolation approach



Multitask Recursive GP approach

B. RGP-G Prediction approach

Performs future predictions at desired time resolution using the
previously obtained measurements.

Initialize: GP prior function with mean and covariance

Inputs: Measurements received at time t = 1.

Consists of two steps:

a) Predict: Infer the joint GP prior using measurements received upto
timet-1

b) Update: Update the GP function with new measurements received
at time t using Kalman filter step

c) Forecast measurements at time t+1 using GP function updated at
previous times. Continue until next measurements are received.

Output: Predicted measurements at finest time resolution

node 1(P)

node 1(Q)

node M (P)

node M (Q)

t:():ug:()
C({:(qu@)BQ)@K

@;ES
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node 1 (P) /\
node 1(Q) /\
nodeM(P) _*~____~
node M (Q) I
...... » t=1: “5,1’ Cg,l SIS
(36),(37)
A
5 + predict
Y1
« Update

node 1 (P)

node 1(Q)

node M (P)

hode M (Q)

— X
T~

9.0 P
t=2: Ky Cg,2

(41),42)

RGP-G prediction approach



Simulation results

- |EEE 37 bus system

- AMI and SCADA measurements recursively arrives
attimet =1, ..., T

- Predictions of AMI measurements: 1-min ahead

- Use the previously updated GP function for
predictions.

Key observations:
* Recursive GP prediction accurately predicts the AMI measurements at finest time resolution.
* Offers nearly 40% improvement compared to the exponential moving average method [11]
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RGP-G prediction Exponential

moving average

[11]
0% missing 2.26% 6.44%
10% missing 3.5% 7.75%
20% missing 4.8% 8.13%

MAPE of imputed time-series data of AMI measurements
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Distribution system state estimation (DSSE)

Integrating multi-timescale measurements

Integrating Topology and Phase Identification
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Doing More with Less! \ fre
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System-related Uncertainties \
{ Basic Matrix J
completion

mXin I X1, +2, 1Y — Py (X) lIZ

W=-Y. 1YV,

A

1- Topology Error (Lacking information

M = (Yildiag(V), —j¥iidiag(V)) about connection among the nodes)

Uncertainties

2 — Phase Error (incorrect information

Yy = [
about the phase labels)

Yoo YOL]
Yio YL

Admittance Matrix



Joint Topology Identification and
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State estimation

1

37

% ? Topology ldentification:
2 kg Knowledge of switch status (open/close) using available measurements
27 S1 28
o » 32
Ve Tk e minlsl +Ally - eys
g @ , 4 31 . subject to:
. ls ' YLLV_My'P+YLOV0=O “
1 10 \ >
12e ® 23 §
S5 s4 24 i YLL = 7+51Y1 + "’+SnYn
17 = Goals:
21 — — a
15 pu . M, = (diag(V), —jdiag(l7)) 1- Estimate Voltage
16 . . . 2 v v | | ar.1d Power.
| Y = [ 00 OL] Admittance Matrix 2- Estimate Switch
; 561 Yio Yy Status
ose
s = {0 Close MINLP

[12] H. S. Karimi and B. Natarajan, "Joint Topology Identification and State Estimation in Unobservable Distribution Grids," in IEEE Transactions on Smart Grid, vol. 12, no. 6, pp.
5299-5309, Nov. 2021, doi: 10.1109/7SG.2021.3102179.




Approach

1- MILP

min||S|l; + Ally — @yS ||
subject to:
Yy V-M,P+Y;,Vo=0
—(1—Sl')F < Ui -V < (1 —Si)F
—FSl' < Ui < FSl'

Using an auxiliary variable, we

remove the nonlinear term:
Ui — SiV

Y, =Y +s;Y ++5s,Y,

< IEEE

\ @Es

2- Convex Relaxation

We consider x; as switch status where
0<x; <1

YLL = 7 + x1Y1 + -+ ann

Solution: Alternating Minimization

min||S|ly +Ally — @S |,
subject to:
YLL V — MyP + YLOVO =0
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(exe
Results \ (s

— .
1 T T T T T T T T
3‘2 —#%— Convex
2% —&— MILP
2 36 g 1.2 —&— MINLP ]
. o 35 = —&— WLS
27 s1 28 =
A . > 32 & !
25 =]
S2 -
\. 6 5 30¢ $ §
; b 4 > ° 0.8
8 31 ® 34 2
j=]
7 e 9 E 0.6
1 S3 5
10 O
e ® ® 23 5
S5 s4 o 24 g‘
K=
17 13 S
[=]
15 ® 11 o2l o
19
16 T 2 '
; 18 20 10 20 30 40 50 60 70 80 90
CMR %
S6

Probability of accurate topology identification — MINLP,

IEEE 37-node test feeder with 6 switches MILP and convex approaches
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Phase Identification

* Phase changes occur frequently in the distribution networks which are
not always tracked continuously.

e Utilities have limited or unreliable information to identify the phase
labels (A, B or C).

e Distribution grid is generally unobservable and measurement data is

limited.
Tree representation of network topology with ?
representing the unknown phase labels
( 9
(a2 ¥
(A T2 | | Question 1: How to provide accurate phase information using

limited measurements in the distribution grid?
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Theorem 1 - In a multi-phase distribution grid, if two terminal buses of a branch are connected on the
same phase, their phase voltage correlation is the largest [14].

/sz(l) 5i(2) si(3) si(1) s:(2) s(3) N

Inbuts: ’ . Bus ¢ ‘ ; ‘ Bus ©
- Voltage magnitude time-series ><

measurements. ® @Ocs) [ 1 Bus j

- Set of known bus label indices. \_t(1) 6(2) 4(3) t;(1) () 43) )

Recover the Graph phase connectivity by solving an /si(l) 5(2) Si(g)Busi /si(l) si(2) &)

optimization problem using - ® ® O

Objective function: Minimize the variation of voltage signals in _ é

the graph and use the known phase label information BusJ Bus j
\_ti(1) () \_ t;(1)

Constraints: Must-link constraints, cannot-link constraints, Valid (b) ()

set of Adjacency matrices. Different possible configurations for a

two bus connection. (a) three phase end
(b) two phase end (c) one phase end

[13] Dahale, Shweta and B.Natarajan, “Phase Identification in Unobservable Distribution Systems”, (manuscript in preparation).
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Consider a matrix of voltage magnitude measurements V € R , Wwhere N - total time over which the samples are collected.
V= [lel, . ..,Vfg"']T where Vipi is the nodal voltages on bus i with phases p;,
(e.g., V'i = [V&, VP, VE]).
The aim is to determine the ¢ labels with respect to the reference of substation phases.

- Objective function: Minimize the variation of voltage signals in the graph and use the known phase label information.
- Constraints: Must-link constraints, cannot-link constraints, Valid Adjacency matrix.

Known entries in the adjacency matrix (Pq (Aknown)) is defined as,

[PQ.(Aknown)]mn = {[Aknown]mm if (m’ Tl) € Q

0, otherwise

} Must-link constraints

“+ Cannot-link constraints
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Results \
- We compared the proposed approach with Spectral Clustering approach [15] on IEEE 37 bus test system (40% known and 60%

unknown).
- The power at each bus is an aggregation of customers which are randomly considered in the range 75-100.
- Power flow analysis is run for one day to generate voltage timeseries measurements.

95.5 T T T T T T T T 120 T T T T
—#—— Spectral clustering approach

) 110 | —<— Proposed approach
=4
e
8 100 |
=
g ¢ 5 @ O O O OO
b=l Z 90y
3 £
o =
< 8 80}

=
g 3
5 < 70t
Q
B
& 60 | 1
il A
3 Y
[&] L =0
2 50

a5 . . . . . . . 40 — ‘ ‘ ‘ . . ‘ ‘ ‘
10 20 30 40 50 60 70 80 90 100 2 4 6 8 10 12 14 16 18 20
Level of observability(%) Incorrect phase labels(%)
Performance of phase identification approaches in the presence of limited spatial Performance of phase identification approaches in the presence of incorrect phase
measurements labels

Key observations:
- Across all fraction of available data, the proposed approach is accurate in identifying the phase labels.
- The proposed approach is insensitive to incorrect bus phase labels and achieves high fidelity with an accuracy higher than 90%.
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Focus on Distribution system situational awareness NOW!

 Data and model driven approaches can help
e lessdata === more opportunities to innovate!

"It is much more rewarding to do more with less."
-- Donald Knuth

HELLO

1 AM A...

| T PROBLEM
| _SOLVeR
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