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Situational Awareness is Key!

Most grid operators lack either visibility or control of behind-the-meter devices

DERMS transform the 
DER/EV/BTM assets into 
solutions

Exploiting Information for system situational awareness



Information is Power!

Utility standpoint

• Have less than what we would like 
• Lack visibility or control of BTM devices
• Collected data is in different databases
• Data is collected at different time scales
• Data collected may not be consistent/reliable
• Data is not used for operational purposes due to the delays 

involved



Grand Challenge

We may never have the quantity or the quality of data we 
need for complete situational awareness at the grid edge. 

Can we do more with less?



Doing More with Less!

Distribution system state estimation (DSSE)

Integrating multi-timescale measurements

Integrating Topology and Phase Identification



Distribution grid is unobservable



Sparsity-based state estimation 
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Compressed Sensing based DSSE
Estimate the signal of interest 𝒙𝒙 ∈ ℝN from compressed measurements 𝒚𝒚 ∈ ℝM (𝑀𝑀 < 𝑁𝑁)

𝒔𝒔 : Sparse signal
𝒚𝒚 : Compressed measurement 
(Power and Voltage (𝑷𝑷,𝑽𝑽))
𝝋𝝋 : Measurement matrix 
𝝍𝝍 : Sparsifying matrix (e.g., wavelet)

�𝒙𝒙 = 𝝍𝝍𝒔𝒔 The recovered 
signal

𝑚𝑚𝑚𝑚𝑚𝑚 𝒔𝒔 1 + 𝛾𝛾 𝒚𝒚 − 𝝋𝝋𝝋𝝋𝒔𝒔 2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:

𝑽𝑽 − 𝑨𝑨.𝑷𝑷 + w 𝟐𝟐 < 𝝐𝝐

𝒘𝒘 = −𝒀𝒀𝐿𝐿𝐿𝐿−𝟏𝟏𝒀𝒀𝐿𝐿𝐿𝑽𝑽0
𝑴𝑴 = 𝒀𝒀𝐿𝐿𝐿𝐿−𝟏𝟏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(��𝑽𝑽),−𝑗𝑗𝒀𝒀𝐿𝐿𝐿𝐿−𝟏𝟏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(��𝑽𝑽)

𝒀𝒀 = 𝒀𝒀00 𝒀𝒀0𝐿𝐿
𝒀𝒀𝐿𝐿𝐿 𝒀𝒀𝐿𝐿𝐿𝐿

Admittance Matrix

𝒙𝒙 = 𝑷𝑷
𝑽𝑽



Matrix completion based DSSE
𝑿𝑿 = 𝑷𝑷 𝑸𝑸 𝑅𝑅𝑒𝑒(𝑽𝑽) 𝐼𝐼𝑚𝑚(𝑽𝑽) 𝑽𝑽

𝒀𝒀 = 𝑃𝑃Ω(𝑿𝑿) 𝑖𝑖𝑖𝑖 = � 𝑿𝑿𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗) ∈ Ω
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Measurement 
(Incomplete) Matrix

Complete Matrix

Only a sampled set of entries 
𝑿𝑿𝑖𝑖𝑖𝑖 , (𝑖𝑖, 𝑗𝑗) ∈ Ω are available.

Matrix of interest

GOAL: recover the
unknown entries in 𝒀𝒀

min
𝐗𝐗

∥ 𝐗𝐗 ∥∗ +𝜆𝜆1 ∥ 𝒀𝒀 − 𝑃𝑃Ω (𝑿𝑿) ∥𝐹𝐹2

subject to 𝐯𝐯 = 𝐌𝐌𝐌𝐌 + 𝐰𝐰



Tensor Completion based DSSE

GOAL: recover the
unknown entries in 𝓜𝓜

When, we have different matrices of interest across time:

𝓜𝓜 = 𝑴𝑴1 𝑴𝑴2 … . 𝑴𝑴𝑡𝑡−1 𝑴𝑴𝑡𝑡

min. �
𝑖𝑖=1

3

𝛽𝛽𝑖𝑖 𝓧𝓧𝑖𝑖 ∗

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:
𝑃𝑃Ω 𝓧𝓧𝑖𝑖 = 𝑃𝑃Ω 𝓜𝓜𝑖𝑖
𝑽𝑽𝒊𝒊 = 𝑨𝑨.𝑷𝑷𝒊𝒊 + 𝑾𝑾

Tensor of interest

𝛽𝛽𝑖𝑖 - positive constant value. 
Suffix 𝑖𝑖 denotes the unfolding
operation along the mode 𝑖𝑖



Sample Simulation results
Comparison of Sparsity-based DSSE - 1D- Compressive Sensing and Matrix Completion based DSSE 
approaches [4]

Key observations-
• Estimate system states accurately even at 30% of available measurements. 
• Compressive sensing exploits sparsity of a signal, hence performs better than Matrix completion

R. Madbhavi, B. Natarajan and B. Srinivasan, "Enhanced Tensor Completion Based Approaches for State Estimation in Distribution Systems," in IEEE Transactions on Industrial Informatics, vol. 17, no. 9, pp. 5938-5947, Sept. 2021
[4] Dahale, Shweta, Hazhar Sufi Karimi, Kexing Lai, and Balasubramaniam Natarajan. "Sparsity Based Approaches for Distribution Grid State Estimation-A Comparative Study." IEEE Access, (2020): 198317-198327.

Alam, SM Shafiul, Balasubramaniam Natarajan, and Anil Pahwa. "Distribution grid state estimation from compressed measurements." IEEE Transactions on Smart Grid 5.4 (2014): 1631-1642.



Doing More with Less!

Distribution system state estimation (DSSE)

Integrating multi-timescale measurements

Integrating Topology and Phase Identification



Multi-time scale data issue

Unevenly sampled data

Missing and corrupt data

Different accuracy levels 

Limited measurements

Issues -

Sources of information in smart distribution systems 

How to reconcile the 
heterogenous measurements 

and estimate states in low-
observable distribution 

systems?



• Existing approaches do not effectively exploit the correlations among the time-series data.

• Requires large measurement redundancy and performs poorly in case of intermittent measurements.

• Do not provide uncertainty bounds on the imputed measurements.

Shortcomings

• Authors in [5] incorporated a simple linear interpolation technique along-with Weighted least squares state estimation
technique.

• [6] uses historical timeseries data from smart meters to find kNN cluster centers and then use for imputation approach
to impute the time-series data.

• Approach in [7] uses a data collation method to reconcile heterogeneous measurements and a Kalman filter method to
perform DSSE. The data collation consists of an exponential moving average method to extrapolate the slow-rate
measurements.

Related work



Proposed GP framework

Proposed GP Framework [8], [9]

Stage 1 – Multitask GP approach. 
Stage 2 – Bayesian matrix completion based DSSE.

• Stage 1 reconciles measurements at 
finest time resolution and provides 
uncertainty bounds

• Stage 2 incorporates the measurements 
and the associated uncertainty to 
estimate the system states in low-
observable distribution systems.

[8] Dahale, Shweta, and Balasubramaniam Natarajan. "Multi time-scale imputation aided state estimation in distribution system." 2021 IEEE Power & Energy Society General Meeting (PESGM)  
IEEE, 2021
[9] Dahale, Shweta, and Balasubramaniam Natarajan. "Bayesian Framework for Multi-timescale State Estimation in Low-Observable Distribution Systems." IEEE Transactions on Power 
Systems (2022).



Stage 1: Multitask GP approach

𝒟𝒟

Training dataset ℳ - {𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊}𝑖𝑖=1𝑃𝑃

Test dataset 𝒟𝒟 = {�𝒙𝒙𝒊𝒊, �𝒚𝒚𝒊𝒊, �𝒙𝒙𝒊𝒊
∗}𝑖𝑖=1𝑃𝑃

GP Prior - 𝑓𝑓 𝒙𝒙 =
𝒢𝒢𝒢𝒢 𝑚𝑚𝜙𝜙 𝒙𝒙𝒊𝒊 , 𝑘𝑘𝜃𝜃 𝒙𝒙𝒊𝒊,𝒙𝒙𝒊𝒊′

Likelihood - 𝑦𝑦(𝒙𝒙) ∼ 𝒩𝒩(𝑓𝑓(𝒙𝒙),𝜎𝜎2)

GP prior 
parameters 𝜓𝜓 = 
{𝜙𝜙, 𝜃𝜃} optimized 

by maximizing log 
marginal 
likelihood

ℳ

𝑝𝑝(�𝐲𝐲𝑖𝑖∗|�𝐱𝐱𝑖𝑖∗, �𝐱𝐱, �𝐲𝐲) = 𝒩𝒩(𝐦𝐦∗,𝐊𝐊∗)
where 𝐦𝐦∗= 𝑚𝑚𝜙𝜙(�𝐱𝐱∗) + 𝐾𝐾𝜃𝜃

∗𝑥𝑥(𝐾𝐾𝜃𝜃
𝑥𝑥𝑥𝑥 + 𝜎𝜎2𝐼𝐼)−1(�𝐲𝐲 − 𝑚𝑚𝜙𝜙(�𝐱𝐱))

𝐊𝐊∗ = 𝐾𝐾𝜃𝜃∗∗ − 𝐾𝐾𝜃𝜃
∗𝑥𝑥(𝐾𝐾𝜃𝜃

𝑥𝑥𝑥𝑥 + 𝜎𝜎2𝐼𝐼)−1(�𝐲𝐲 − 𝐾𝐾𝜃𝜃
𝑥𝑥∗)

Goal: Predict {�𝒚𝒚𝒊𝒊
∗}𝑖𝑖=1𝑃𝑃 using �𝒙𝒙𝒊𝒊 and �𝒚𝒚𝒊𝒊 and GP 

prior parameters.

𝜓𝜓 = {𝜙𝜙, 𝜃𝜃}

Inputs:
• Incomplete 

𝐏𝐏,𝐐𝐐 measurements sampled 
at 15-min interval 

• Incomplete 𝐕𝐕 measurements 
sampled at 1-min interval

Output:
• 𝐏𝐏,𝐐𝐐, 𝐕𝐕 measurements 

obtained at finest time 
resolution along-with their 
variances.

• Gaussian process (GP) is defined as a collection of random variables, any finite collection of them has a joint normal 
distribution.

• GP prior function is defined over time for each measurement as,
𝑓𝑓 𝒙𝒙 = 𝒢𝒢𝒢𝒢 𝑚𝑚𝜙𝜙 𝒙𝒙𝒊𝒊 ,𝑘𝑘𝜃𝜃 𝒙𝒙𝒊𝒊,𝒙𝒙𝒊𝒊′

where,  𝑚𝑚𝜙𝜙(⋅) is the mean function (e.g., deep neural network)
𝑘𝑘𝜃𝜃(⋅,⋅) is the kernel function (e.g., radial  basis kernel function)



Stage 2 -Bayesian Matrix completion based 
DSSE

• 𝐗𝐗 = 𝐀𝐀𝐁𝐁𝐓𝐓 = ∑𝑖𝑖=1𝑘𝑘 𝐚𝐚.𝑖𝑖𝐛𝐛.𝑖𝑖
𝑇𝑇

• 𝐩𝐩(𝐀𝐀|𝜸𝜸) = ∏𝑖𝑖=1
𝑛𝑛 𝒩𝒩(𝐚𝐚.𝑖𝑖|𝟎𝟎, 𝛾𝛾𝑖𝑖−1𝐈𝐈𝑚𝑚) • 𝐩𝐩(𝐁𝐁|𝜸𝜸) = ∏𝑖𝑖=1

𝑘𝑘 𝒩𝒩(𝐛𝐛.𝑖𝑖|𝟎𝟎, 𝛾𝛾𝑖𝑖−1𝐈𝐈𝑛𝑛)

• 𝐩𝐩 𝛾𝛾𝑖𝑖 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎, 1
𝑏𝑏

)

B) Low-Rank Modeling 

𝐗𝐗 = 𝐔𝐔𝐔𝐔𝐕𝐕𝐓𝐓. Set 𝐀𝐀 = 𝐔𝐔𝐒𝐒
𝟏𝟏
𝟐𝟐 and 𝐁𝐁𝐓𝐓 = 𝐒𝐒𝟏𝟏/𝟐𝟐𝐕𝐕𝐓𝐓

A) Observation and noise models
)𝐃𝐃 = 𝑃𝑃Ω(𝐗𝐗 + 𝐍𝐍

𝐩𝐩(𝐃𝐃|𝐀𝐀,𝐁𝐁) = �
(𝑖𝑖,𝑗𝑗)∈Ω

𝒩𝒩(𝐷𝐷𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖 ,𝛽𝛽𝑖𝑖𝑖𝑖−1)

GP output −𝐃𝐃 and 𝛽𝛽
Re(V)P Q Imag(V) |𝑉𝑉|

M measurements   

𝐚𝐚.𝑖𝑖 - 𝑖𝑖𝑡𝑡𝑡 column of A
𝐚𝐚𝑖𝑖. - 𝑖𝑖𝑡𝑡𝑡 row of A

N
 fe

ed
er

s

𝐩𝐩(𝐃𝐃,𝐀𝐀,𝐁𝐁,𝜸𝜸) = 𝐩𝐩(𝐃𝐃|𝐀𝐀,𝐁𝐁)𝐩𝐩(𝐀𝐀|𝜸𝜸)𝐩𝐩(𝐁𝐁|𝜸𝜸)𝐩𝐩(𝜸𝜸) Joint probability distribution

C) Obtain an estimate of 𝐀𝐀,𝐁𝐁 and 𝜸𝜸 by using the joint probability distribution given as,  



Slow rate measurements – Averaged at 15 min
Fast rate measurements  – Sampled at 1 min

parameter value

MLP layer Two hidden layer
(size 64 each)

Activation ReLU

No. of epochs 20

Optimizer Adam

Data imputation of a slow-rate measurement timeseries at node 4Bayesian MC 
initial 
parameters

value

Initial 𝛾𝛾 10e-5 

Convergence 
criteria

10e-17

Slow rate 
measurements

Fast rate 
measurements

Slow rate 
measurements

IEEE 37 test system

Simulation results



Power recovery performance at different FADs Voltage magnitude recovery performance at different 
FADs

Simulation results

Key observations:
• State estimates using Bayesian matrix completion with measurements from multitask GP 

approach performs better than linearly interpolated timeseries measurements. 



Multitask Recursive GP approach 

• Recursively imputes multiple unevenly sampled measurements [10]

• Incorporate spatial information among measurements by leveraging graphical structure of the grid. 

• A computationally efficient approach with the flexibility to perform batch-wise or real-time processing of 
measurements.

[10] Dahale, Shweta, and Balasubramaniam Natarajan. "Recursive Gaussian Process over graphs for Integrating Multi-timescale Measurements in Low-Observable Distribution Systems 
" IEEE Transactions on Power Systems (under review).



Multitask Recursive GP approach 
Goal: Recursively update the 
GP function and perform 
imputation as measurements 
are received at time 𝑡𝑡 =1,…,𝑇𝑇

Performs imputation after a batch of measurements in set time-frame 
are received. 

Initialize: GP prior function with zero mean and covariance
Inputs: Measurements received upto time 𝑇𝑇.  
Consists of two steps: 
a) Predict: Infer the joint probability GP function using measurements 

received upto time 𝑡𝑡 -1
b) Update: Update the GP function with new measurements received 

at time 𝑡𝑡 using Kalman filter step
Output: Impute at finest time resolution using updated GP mean and 
covariance function.

RGP-G interpolation approach

A. RGP-G Interpolation approach

Proposed approach: Recursive GP 
with/ without graphs

RGP-G/RGP Interpolation

RGP-G/ RGP Prediction



Performs future predictions at desired time resolution using the 
previously obtained measurements. 

Initialize: GP prior function with mean and covariance
Inputs: Measurements received at time 𝑡𝑡 = 1.  
Consists of two steps: 
a) Predict: Infer the joint GP prior using measurements received upto

time 𝑡𝑡 -1
b) Update: Update the GP function with new measurements received 

at time 𝑡𝑡 using Kalman filter step
c) Forecast measurements at time 𝑡𝑡+1 using GP function updated at 

previous times. Continue until next measurements are received. 
Output: Predicted measurements at finest time resolution

RGP-G prediction approach

B. RGP-G Prediction approach

Multitask Recursive GP approach



Simulation results

- IEEE 37 bus system
- AMI and SCADA measurements recursively arrives 

at time 𝑡𝑡 = 1, … ,𝑇𝑇
- Predictions of AMI measurements: 1-min ahead 
- Use the previously updated GP function for 

predictions.

Key observations:  
• Recursive GP prediction accurately predicts the AMI measurements at finest time resolution.
• Offers nearly 40% improvement compared to the exponential moving average method [11]

Scenario RGP-G prediction Exponential 
moving average 
[11]

0% missing 2.26% 6.44%

10% missing 3.5% 7.75%

20% missing 4.8% 8.13%

MAPE of imputed time-series data of AMI measurements



Doing More with Less!

Distribution system state estimation (DSSE)

Integrating multi-timescale measurements

Integrating Topology and Phase Identification



System-related Uncertainties

Linearized Power Flow 

𝒀𝒀 = 𝒀𝒀00 𝒀𝒀0𝐿𝐿
𝒀𝒀𝐿𝐿0 𝒀𝒀𝐿𝐿𝐿𝐿

Admittance Matrix

𝑾𝑾 = −𝒀𝒀𝐿𝐿𝐿𝐿−𝟏𝟏𝒀𝒀𝐿𝐿𝐿𝑽𝑽0

𝑴𝑴 = 𝒀𝒀𝐿𝐿𝐿𝐿−𝟏𝟏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(��𝑽𝑽),−𝑗𝑗𝒀𝒀𝐿𝐿𝐿𝐿−𝟏𝟏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(��𝑽𝑽)
1- Topology Error (Lacking information 
about connection among the nodes)

2 – Phase Error (incorrect information 
about the phase labels)

Uncertainties

Basic Matrix 
completion

min
𝐗𝐗

∥ 𝐗𝐗 ∥∗ +𝜆𝜆2 ∥ 𝒀𝒀 − 𝑃𝑃Ω (𝑿𝑿) ∥𝐹𝐹2

subject to 𝐯𝐯 = 𝐌𝐌𝐌𝐌 + 𝐰𝐰



Joint Topology Identification and 
State estimation

Topology Identification: 
Knowledge of switch status (open/close) using available measurements

𝑠𝑠𝑖𝑖 = �1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
0 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝑚𝑚𝑚𝑚𝑚𝑚 𝑺𝑺 1 + λ 𝒚𝒚 − 𝝋𝝋𝝋𝝋S 2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:

𝒀𝒀𝐿𝐿𝐿𝐿 𝑽𝑽 −𝑴𝑴𝒚𝒚.𝑷𝑷 + 𝒀𝒀𝐿𝐿𝐿𝑽𝑽0 = 𝟎𝟎
Linearized Power 

Flow 

𝒀𝒀𝐿𝐿𝐿𝐿 = �𝒀𝒀 + 𝑠𝑠1𝒀𝒀1 + ⋯+ 𝑠𝑠𝑛𝑛𝒀𝒀𝑛𝑛

𝑴𝑴𝒚𝒚 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(��𝑽𝑽),−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗(��𝑽𝑽)

𝒀𝒀 = 𝒀𝒀00 𝒀𝒀0𝐿𝐿
𝒀𝒀𝐿𝐿0 𝒀𝒀𝐿𝐿𝐿𝐿

Admittance Matrix

Goals:
1- Estimate Voltage 

and Power
2- Estimate Switch 

Status
MINLP

[12] H. S. Karimi and B. Natarajan, "Joint Topology Identification and State Estimation in Unobservable Distribution Grids," in IEEE Transactions on Smart Grid, vol. 12, no. 6, pp. 
5299-5309, Nov. 2021, doi: 10.1109/TSG.2021.3102179.



Approach

𝑚𝑚𝑚𝑚𝑚𝑚 𝑺𝑺 1 + λ 𝒚𝒚 − 𝝋𝝋𝝋𝝋S 2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:

𝒀𝒀𝐿𝐿𝐿𝐿 𝑽𝑽 −𝑴𝑴𝒚𝒚.𝑷𝑷 + 𝒀𝒀𝐿𝐿𝐿𝑽𝑽0 = 𝟎𝟎
− 1 − 𝑠𝑠𝑖𝑖 𝐹𝐹 ≤ 𝑼𝑼𝑖𝑖 − 𝑽𝑽 ≤ 1 − 𝑠𝑠𝑖𝑖 𝐹𝐹

−𝐹𝐹𝑠𝑠𝑖𝑖 ≤ 𝑼𝑼𝑖𝑖 ≤ 𝐹𝐹𝑠𝑠𝑖𝑖

𝒀𝒀𝐿𝐿𝐿𝐿 = �𝒀𝒀 + 𝑠𝑠1𝒀𝒀1 + ⋯+ 𝑠𝑠𝑛𝑛𝒀𝒀𝑛𝑛

Using an auxiliary variable, we 
remove the nonlinear term:

𝑼𝑼𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑽𝑽

1- MILP 2- Convex Relaxation

We consider 𝑥𝑥𝑖𝑖 as switch status where
0 ≤ 𝑥𝑥𝑖𝑖 ≤ 1

Solution: Alternating Minimization

𝑚𝑚𝑚𝑚𝑚𝑚 𝑺𝑺 1 + λ 𝒚𝒚 − 𝝋𝝋𝝋𝝋S 2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:

𝒀𝒀𝐿𝐿𝐿𝐿 𝑽𝑽 −𝑴𝑴𝒚𝒚.𝑷𝑷 + 𝒀𝒀𝐿𝐿𝐿𝑽𝑽0 = 𝟎𝟎

𝒀𝒀𝐿𝐿𝐿𝐿 = �𝒀𝒀 + 𝑥𝑥1𝒀𝒀1 + ⋯+ 𝑥𝑥𝑛𝑛𝒀𝒀𝑛𝑛



Results

Probability of accurate topology identification – MINLP, 
MILP and convex approachesIEEE 37-node test feeder with 6 switches



Phase Identification  

• Phase changes occur frequently in the distribution networks which are 
not always tracked continuously. 

• Utilities have limited or unreliable information to identify the phase 
labels (A, B or C).

• Distribution grid is generally unobservable and measurement data is 
limited.

Tree representation of network topology with ? 
representing the unknown phase labels

Question 1: How to provide accurate phase information using 
limited measurements in the distribution grid?



Proposed approach [13]

Recover the Graph phase connectivity by solving an 
optimization problem using -
Objective function: Minimize the variation of voltage signals in 
the graph and use the known phase label information

Constraints: Must-link constraints, cannot-link constraints, Valid 
set of Adjacency matrices. Different possible configurations for a 

two bus connection. (a) three phase end 
(b) two phase end (c) one phase end

Theorem 1 - In a multi-phase distribution grid, if two terminal buses of a branch are connected on the 
same phase, their phase voltage correlation is the largest [14]. 

Inputs:
- Voltage magnitude time-series 

measurements.
- Set of known bus label indices.

[13] Dahale, Shweta and B.Natarajan, “Phase Identification in Unobservable Distribution Systems”, (manuscript in preparation).



Proposed approach

Known entries in the adjacency matrix (𝑃𝑃Ω (𝐀𝐀𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤)) is defined as,

[𝑃𝑃Ω(𝐀𝐀𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤)]𝑚𝑚𝑚𝑚 = �[𝐀𝐀𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤]𝑚𝑚𝑚𝑚, if (𝑚𝑚,𝑛𝑛) ∈ Ω
0, otherwise

- Objective function: Minimize the variation of voltage signals in the graph and use the known phase label information.
- Constraints: Must-link constraints, cannot-link constraints, Valid Adjacency matrix. 

Must-link constraints

Cannot-link constraints𝐀𝐀 (𝐬𝐬𝑖𝑖(𝑙𝑙), 𝐬𝐬𝑖𝑖(𝑚𝑚)) ≤ 0,𝐀𝐀(𝐭𝐭𝑖𝑖(𝑙𝑙), 𝐭𝐭𝑖𝑖(𝑚𝑚)) ≤ 0, 𝑚𝑚, 𝑙𝑙 = 1, . . . , 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1, . . . ,𝐾𝐾.

𝐒𝐒⊺𝐒𝐒 = 𝐈𝐈

𝐀𝐀 ∈ 𝒜𝒜

min
𝐀𝐀,𝐒𝐒

�tr(𝐕𝐕⊺𝐋𝐋𝐋𝐋) + 𝜂𝜂 ∥ 𝐯𝐯𝐯𝐯𝐯𝐯(𝐀𝐀) ∥1 +𝛽𝛽tr(𝐒𝐒⊺𝐋𝐋𝐒𝐒 + 𝜆𝜆1 ∥ 𝑃𝑃Ω(𝐀𝐀 − 𝐀𝐀𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤𝐤) ∥𝐹𝐹2

0.5 ≤ �
𝑚𝑚=1

𝑝𝑝𝑗𝑗

𝐀𝐀(𝐬𝐬𝑖𝑖(𝑙𝑙), 𝐭𝐭𝑗𝑗(𝑚𝑚)) ≤ 1,∀𝑖𝑖,∀𝑗𝑗, 𝑖𝑖 ∼ 𝑗𝑗

0.5 ≤ ∑𝑙𝑙=1
𝑝𝑝𝑖𝑖 𝐀𝐀(𝐬𝐬𝑖𝑖(𝑙𝑙), 𝐭𝐭𝑗𝑗(𝑚𝑚)) ≤ 1,∀𝑖𝑖,∀𝑗𝑗, 𝑖𝑖 ∼ 𝑗𝑗

Consider a matrix of voltage magnitude measurements 𝐕𝐕 ∈ ℝ𝑀𝑀×𝑁𝑁, where 𝑁𝑁 - total time over which the samples are collected. 
𝐕𝐕 = [𝐕𝐕1

𝑝𝑝1 , . . . ,𝐕𝐕𝐾𝐾
𝑝𝑝𝐾𝐾]⊺ where 𝐕𝐕𝑖𝑖

𝑝𝑝𝑖𝑖 is the nodal voltages on bus 𝑖𝑖 with phases 𝑝𝑝𝑖𝑖, 
(e.g.,𝐕𝐕𝑖𝑖

𝑝𝑝𝑖𝑖 = [𝐕𝐕𝑖𝑖𝑎𝑎,𝐕𝐕𝑖𝑖𝑏𝑏,𝐕𝐕𝑖𝑖𝑐𝑐]). 
The aim is to determine the 𝜙𝜙 labels with respect to the reference of substation phases. 



Results
- We compared the proposed approach with Spectral Clustering approach [15] on IEEE 37 bus test system (40% known and 60% 

unknown).
- The power at each bus is an aggregation of customers which are randomly considered in the range 75-100.
- Power flow analysis is run for one day to generate voltage timeseries measurements.

Performance of phase identification approaches in the presence of limited spatial 
measurements

Performance of phase identification approaches in the presence of incorrect phase 
labels

Key observations: 
- Across all fraction of available data, the proposed approach is accurate in identifying the phase labels.
- The proposed approach is insensitive to incorrect bus phase labels and achieves high fidelity with an accuracy higher than 90%. 



Take-home Message
Focus on Distribution system situational awareness NOW!

• Data and model driven approaches can help
• Less data                 more opportunities to innovate!
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