@Fes | ©IEEE

Power & Energy Society®

ale Security-
Commitment
\

; 7\ ; and, Xiaoyi Gu,Santanu S. Dey

" Enet f' er ustrial & Systems Engineering
Argonne Nationa Georgia Institute of Technology

(ops | @EEE

ommitment problems

Learning-Enhanced

Learning to Optimize

Problem in focus

» Security constrained unit commitment (SCUC)

* seek most cost-effective generator commitment and production output levels

* the most fundamental mixed-integer programming problem in power systems
* electricity market clearing

* S400 billion annually; 0.1 optimality gap in 20 mins; often ends up with large gaps

* reliability analysis, production cost modeling, etc.

* Increasingly challenging
* new energy components, e.g., combined cycle, energy storage, distributed energy resources
* sub-hourly commitment, e.g., 15-min commitment

 uncertainties Minimize) ¢4(2ge, Yge) (1)
geG
* Things that don’t work Subject to.(Tou,you) € o veG (2
. Z Ygt = Z dy VteT (3)
* Cutting planes prr Ry
* Strong formulations — <Y, (Z ygt~dbt> <F VeeLu{O}leLteT. (4)
beB 9eGy

* Decomposition 2 € (0,1} VgeG,teT (5)

Ygt =0 VgeG,.teT (6)

Learning to Optimize

* Relevant work (prior to 2017) [w y |
* Solve SCUC using Artificial Neural Networks:
* Sasaki, Watanabe, Kubokawa, Yorino & Yokoyama (1992) (Sover] [sower | [sower |
* Wang & Shahidehpour (1993)
+ Walsh & O’'mally (1997) (oomon) [Csowar | [sowon
* Liang & Kang (2000) l V
+ Use ML to enhance MILP solvers: petten Todpeer Retbear
* Alvarez, Wehenkel, Louveaux (2014) Pt pave pare
* Alvarez, Louveaux, Wehenkel (2017) ooee] [] e]
 Khalil, Dilkina, Nemhauser, Ahmed, Shao (2017) T | =] e)
* Qur perspective
* General framework but NOT application-agnostic Lo] | (oo J] coren]
* Help solvers become progressively better over time == o e |

Learning to Optimize

* Learning security constraints

* N-1 contingency criteria (transmission/security constraints) are fundamental reliability requirements
enforced by NERC

* Security constraints have large impact on performance: _Ff< Z 5¢, (Z Yot — dbt) < FY.
* Quadratic number, typically very dense beB geGy
* Very few are actually binding, but hard to tell in advance

* Contingency Oracle: Predict which contingency constraints should be added to the relaxation and
which should be omitted

* Training phase:
* Solve problem without any transmission constraints
* Add small subset of most-violated constraints and resolve
* Repeat until no further violations are found

* Test phase: If constraint was necessary for at least 1% of training cases, add at start, then follow
previous algorithm

Learning to Optimize

* Learning initial feasible solutions
* Primal bounds are still a bottleneck
* Modern formulations/solvers usually yield very strong dual bounds
* Most time is spent finding high-quality primal solutions
* Warm start: find, among large set of previous solutions, ones that are likely to work well as
warm starts in MILP solvers
* Training phase (instance-based learning):
* Solve each training instance and store its solution
* Test phase:

* Find k training instances
closest to the test instance

* Use their k optimal solutions
(or partial optimal solutions)
as warm starts

Learning to Optimize

* Learning affine subspaces
* Optimal SCUC solutions have a number of patterns:
* Some units are operational throughout the day
* Some units are only operational during peak demand

* Affine subspace: Find subspaces (described by a set of hyperplanes) where the solution is
very likely to reside
* Training phase (instance-based learning):
* Consider a fixed set of candidate hyperplanes

* Build supervised models (e.g., SVM) to predict if hyperplane is satisfied. Discard models with low
precision or recall

* Test phase:

* Predict which hyperplanes are likely to satisfied using previous model and add them to the
relaxation

Learning to Optimize

* Learning affine subspaces
* Hyperplanes considered:

* Xu=0

¢ th =1 Commitment Variables
L4 th= Xg t1 Instance Total Fix Zero Fix One Fix Next Free Precision
aee . casel888rte 7128.0 17.9% 52.0% 24.7% 5.4% 99.8%
* Classifier: Support Vector Machines casel95irte 93840 20.0% 459% 27.8% 6.3% 99.8%
o .. h h I d I . case2848rte 13128.0 23.9% 44.8% 23.2% 8.2% 99.7%
Training high-quality models: case3012up 120480 185% 545% 21.3% 5.6% 99.8%
. . case3375wp 14304.0 14.4% 57.8% 22.4% 5.5% 99.8%
* Discard hyperplanes with very unbalanced case6468rte 31080.0 76% 724% 128% 7.2% 99.9%
|a bels case6470rte 31920.0 7.3% 70.3% 16.2% 6.2% 99.8%
case6495rte 32928.0 5.8% 75.4% 13.1% 5.7% 99.9%
* Measure precision and recall using k-fold cross case6516rte 33312.0 6.1% 75.5% 12.0% 6.4% 99.9%
validation Average 20581.3 135% 60.9% 19.3% 6.3% 99.8%

* Discard models with low recall or precision

Learning to Optimize

* Computational results

* SCUC: Find cost-efficient power generation schedule, subject to: Instance Buses Units Lines
* Production during each hour must satisfy demand casel888rte 1,888 297 2,531
casel9birte 1,951 391 2,596

* Power flows must be within safe limits case2848rte 2,848 547 3,776

. . . . case3012wp 3,012 502 3,572

e Other physical, operational & economic constraints case337Swp 3.374 596 4161
caseb6468rte 6,468 1,295 9,000

* Widely used in planning and operations: case6470rte 6,470 1,330 9,005

case6495rte 6,495 1,372 9,019

* Day-ahead electricity markets, reliability assessment case6bibrte 6515 1388 0037

* Benchmark set: 9 realistic, large-scale cases from MATPOWER
* Training instances: 300 random variations

* Test instances: 50 random variations

Demand (MW)

* Randomized parameters:

* Peak system-wide load
* Production and start-up costs 0 5 T 15 26
Hour

* Geographic load distribution
* Temporal load profile

Learning to Optimize

* Computational results
* The best record for solving large-scale SCUC

algorithm
500 @ zero

3 tr
400 3 tr-ws

3 tr-aff

300

200

MIP Wallclock Time (s)

—
o
o

0l.._l__l.._l--_ll.

@ @ o «® @
o N N Ao o° Y
QR 20 s O o>

® ® @° @ o @° ° o

Learning to Solve Large-Scale Unit Commitment (Xavier, Qiu, Ahmed (2020))

Learning to Optimize

* MIPLearn

* Flexible, extensible, and easy-to-use open-source framework for learning-enhanced integer
programming
* MIPLearn components
* Initial feasible solutions
* lLazy constraints and user cuts
* Branching priorities
e Optimal value

* Modeling languages: JuMP, Pyomo, Gurobi Python API
* Compatible MIP solvers:

* Commercial: Gurobi, CPLEX, XPRESS

* Non-commercial: SCIP, Cbc
* Repository:

* https://github.com/ANL-CEEESA/MIPLearn

* Alinson S. Xavier, Feng Qiu. MIPLearn: An Extensible Framework for Learning-Enhanced Optimization.
Zenodo (2020). DOI: 10.5281/zenod0.428756

* License: Open source (3-clause BSD)

https://github.com/ANL-CEEESA/MIPLearn
https://doi.org/10.5281/zenodo.4287567

Learning to Branch

Fractional

Bra nCh & BOU nd A maximization problem | , _ 4, Branching variable x;
X1,%5,x3 € {0,1}

* A schema that exhaustively / \

search a solution space in a

. . . T3z = 0 T3z = 1
mixed-integer programming Fractional Fractional Branching variable x,
problem z=21.65 z = 21.85
¢ Combining with bounding / \
techniques, it provides a solution
with an optimality gap o= 1,2, =0 g3 =1, =1 Branching
. ::nt_eir Frjc;o:al variable x;
° = Z = N
Market transparent and fairness NTEGER
* A better branching strategy can / \
help B&B convergence 23 = 1,83 = 1,31 = 0 sa=Loy=loy =1
Integer Infeasible
z=21
INTEGER, INFEASIBLE

https://mat.tepper.cmu.edu/orclass/integer/node13.html

Learning to Branch

Branch

* Two decisions in branching: node selection and variable selection

* Node selection: best known strategy: always choose the nodes with best
lower bounds

* Variable selection:

* Most infeasible (fractional) branching (MIB): cheap but worst
Soagy(6, 1) = min{x;, 1 — x;}
* Strong branching: best (smallest b&b tree) but expensive
_ Spum (D = max{A7, €} * max{A}, €}
A; : objective value change when branch down
* Reliability branching: a light version of strong branching (RB: A: 1)

(1) at most A variables will be probed at a node
(2) for a given variable, n number of probes are deemed sufficient

Learning to Branch

Benchmark ML-enhaced branching

* Alvarez, Alejandro Marcos and Louveaux, Quentin and Wehenkel, Louis (2017), A
machine learning-based approximation of strong branching, INFORMS Journal On
Computing, 29(1):185-195

* Key idea: use machine learning to mimic strong branching; a universal model for all
MIPs

* Features

* Static problem features
* Computed fromc, A4, b

* Dynamic problem features
* The solution of the problem at the current B&B node
* E.g., up and down fractionalities of a variable

* Dynamic optimization features
* Overall state of the optimization

* E.g., statistic features of objective value changes regarding a certain variable

Learning to Branch

Exploit instance similarity in routinely solved optimizazation

* Motivation

* Most industry applications are routinely solved optimization problems sharing high
similarity, e.g., constraint matrix, right-hand sides

* Dedicated ML models for a routinely solved optimization problem should work
better than a generic ML model

* Revised learning to branch approach
* Per variable: each variable has its own ML model
* Per group: a group of relevant variables share a ML model
* Per generator: time index is ignored; e.g., is_on[g,-] v.s. is_on[g,t])
* Pertime: generator index is ignored; e.g., is_on[,t] v.s. is_on[g,t])
* Per type: time and generator indicies are ignored; e.g., is_on v.s. is_on[g,t]

Learning to Branch

Experiment setup
* Home-made branch&bound MIP solver, using Gurobi for solving LPs
ML model: Extremely Randomized Trees (ExtraTree)

* 5 realistic power systems, 24-hour SCUC

Network ‘Hours Generators Buses Lines ‘ Variables Rows Binaries

casel888rte | 24 296 1,888 2,531 | 235591 196,783 41,232
casel951rte | 24 390 1,951 2,596 | 266,088 244,220 54,144
case2848rte | 24 544 2,848 3,776 | 377,760 340,228 71,904
case3012wp | 24 496 3,012 3,572 | 357,146 305,076 59,712
case3375wp | 24 590 3,374 4,161 | 413,161 357,065 71,856

* Rb:100:inf (practical strong branching) used to collect data

Learning to Branch

Branching sore prediction experiments

ML:ET ML:PV
9.0 ol 9.0
i
85 85
S
o 80 » 80
= 2
s 3
s S
° o
£715 275
g i I}
k-] g k-]
L o
& &
7.0 : 7.0
6.5 6.5
6.0 MSE=2.004e-01 6.0 MSE=6.659e-02
6.0 6.5 7.0 7.5 8.0 85 9.0 6.0 6.5 7.0 1.5 8.0 85 9.0
Actual value Actual value
ML:PNA ML:PTI ML:PGE
2.0 9.0 7 2.0
&
8.5 4 8.5 85
& #,
o 80 o 80 5 o 80
3 E = 7 3 £
s s + i s s -
2 2 i 2 i
° i ° X °
275 2 5 275 v 275
o ; o 3% S
° K -] 3 -]
13 ¢ 13 : ” [
I 3 & " e & 1
7.0 b2 7.0 3 7.0
¢ -
6.5 6.5 6.5
6.0 MSE=1.905e-01 60 MSE=1.867e-01 6.0 MSE=1.667e-01
6.0 6.5 7.0 7.5 8.0 8.5 9.0 6.0 6.5 7.0 75 8.0 8.5 9.0 6.0 6.5 7.0 7.5 8.0 85 9.0
Actual value Actual value

Actual value

Figure 1 Cross-Validation Evaluation (case1888rte, 24h, value after logarithm) with MSE

Learning to Branch

Impact on solving SCUC with B&B

Table 4 Relative MIP Gap, node_1imit=1000

Instances Relative MIP gap (%)

Hours Network |MIB RB:100:8 ML:ET ML:PNA ML:PTI ML:PGE ML:PV
24 casel888rte | 1.78 0.96 1.31 1.35 0.90 1.22 0.88
24 casel951rte |0.41 0.20 0.23 0.24 0.20 0.22 0.20
24 case2848rte | 0.83 0.42 0.54 0.59 0.45 0.58 0.41
24 case3012wp | 0.29 0.02 0.08 0.01 0.02 0.01 0.04
24 case3375wp | 0.48 0.12 0.52 0.46 0.50 0.41 0.48

Average 0.76 0.35 0.54 0.53 0.41 0.49 0.40

Learning to Branch

Impact on solving SCUC with B&B

Table 5 Relative MIP Gap, node_1imit=10000

Instances Relative MIP gap (%)

Hours Network |MIB ML:ET ML:PNA ML:PTI ML:PGE ML:PV
24 casel888rte | 1.75 1.13 1.20 0.66 1.03 0.61
24 casel951rte [0.37 0.11 0.11 0.08 0.11 0.08
24 case2848rte | 0.77 0.43 0.47 0.33 0.46 0.30
24 case3012wp [0.27 0.05 0.01 0.01 0.01 0.02
24 case3375wp |0.45 0.51 0.42 0.47 0.31 0.44

Average 0.72 045 0.44 0.31 0.39 0.29

* Similar performance can be observed in pre-solved instances

Learning to Optimize

* Future work
* LP relaxation
* Large-scale MIPs
* Cut generation

* Find valid and useful cuts
* Generate cuts

ACKNOWLEDGEMENT

We appreciate the funding support from Argonne LDRD program and the
Advanced Grid Modeling program (AGM) under DOE Office of Electricity

THANK YOU!

Contact
Feng Qiu
Principal Computational Scientist & Group Manager
Email: fgiu@anl.gov

