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Learning to Optimize

Problem in focus

» Security constrained unit commitment (SCUC)

* seek most cost-effective generator commitment and production output levels

* the most fundamental mixed-integer programming problem in power systems
* electricity market clearing

* S400 billion annually; 0.1 optimality gap in 20 mins; often ends up with large gaps

* reliability analysis, production cost modeling, etc.

* Increasingly challenging
* new energy components, e.g., combined cycle, energy storage, distributed energy resources
* sub-hourly commitment, e.g., 15-min commitment
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Learning to Optimize

* Relevant work (prior to 2017) [ w y |
* Solve SCUC using Artificial Neural Networks:
* Sasaki, Watanabe, Kubokawa, Yorino & Yokoyama (1992) ( Sover ] [ sower | [ sower |
* Wang & Shahidehpour (1993)
+ Walsh & O’'mally (1997) (oomon ) [Csowar | [ sowon
* Liang & Kang (2000) l V
+ Use ML to enhance MILP solvers: petten Todpeer Retbear
* Alvarez, Wehenkel, Louveaux (2014) Pt pave pare
* Alvarez, Louveaux, Wehenkel (2017) ooee ] [ ] e ]
 Khalil, Dilkina, Nemhauser, Ahmed, Shao (2017) T | = ] e )
* Qur perspective
* General framework but NOT application-agnostic Lo ] | (oo J ] coren ]
* Help solvers become progressively better over time == o e |




Learning to Optimize

* Learning security constraints

* N-1 contingency criteria (transmission/security constraints) are fundamental reliability requirements
enforced by NERC

* Security constraints have large impact on performance: _Ff< Z 5¢, ( Z Yot — dbt) < FY.
* Quadratic number, typically very dense beB geGy
* Very few are actually binding, but hard to tell in advance

* Contingency Oracle: Predict which contingency constraints should be added to the relaxation and
which should be omitted

* Training phase:
* Solve problem without any transmission constraints
* Add small subset of most-violated constraints and resolve
* Repeat until no further violations are found

* Test phase: If constraint was necessary for at least 1% of training cases, add at start, then follow
previous algorithm




Learning to Optimize

* Learning initial feasible solutions
* Primal bounds are still a bottleneck
* Modern formulations/solvers usually yield very strong dual bounds
* Most time is spent finding high-quality primal solutions
* Warm start: find, among large set of previous solutions, ones that are likely to work well as
warm starts in MILP solvers
* Training phase (instance-based learning):
* Solve each training instance and store its solution
* Test phase:

* Find k training instances
closest to the test instance

* Use their k optimal solutions
(or partial optimal solutions)
as warm starts




Learning to Optimize

* Learning affine subspaces
* Optimal SCUC solutions have a number of patterns:
* Some units are operational throughout the day
* Some units are only operational during peak demand

* Affine subspace: Find subspaces (described by a set of hyperplanes) where the solution is
very likely to reside
* Training phase (instance-based learning):
* Consider a fixed set of candidate hyperplanes

* Build supervised models (e.g., SVM) to predict if hyperplane is satisfied. Discard models with low
precision or recall

* Test phase:

* Predict which hyperplanes are likely to satisfied using previous model and add them to the
relaxation




Learning to Optimize

* Learning affine subspaces
* Hyperplanes considered:

* Xu=0

¢ th =1 Commitment Variables
L4 th= Xg t1 Instance Total Fix Zero Fix One Fix Next Free Precision
aee . casel888rte  7128.0 17.9%  52.0% 24.7% 5.4% 99.8%
* Classifier: Support Vector Machines casel95irte 93840  20.0%  459%  27.8% 6.3%  99.8%
o .. h h I d I . case2848rte 13128.0 23.9% 44.8% 23.2% 8.2% 99.7%
Training high-quality models: case3012up 120480  185%  545%  21.3% 5.6%  99.8%
. . case3375wp  14304.0 14.4%  57.8% 22.4% 5.5% 99.8%
* Discard hyperplanes with very unbalanced case6468rte 31080.0 76%  724%  128% 7.2%  99.9%
|a bels case6470rte 31920.0 7.3% 70.3% 16.2% 6.2% 99.8%
case6495rte 32928.0 5.8% 75.4% 13.1% 5.7% 99.9%
* Measure precision and recall using k-fold cross case6516rte  33312.0 6.1%  75.5% 12.0% 6.4% 99.9%
validation Average 20581.3 135%  60.9% 19.3% 6.3% 99.8%

* Discard models with low recall or precision




Learning to Optimize

* Computational results

* SCUC: Find cost-efficient power generation schedule, subject to: Instance Buses Units  Lines
* Production during each hour must satisfy demand casel888rte 1,888 297 2,531
casel9birte 1,951 391 2,596

*  Power flows must be within safe limits case2848rte 2,848 547 3,776

. . . . case3012wp 3,012 502 3,572

e Other physical, operational & economic constraints case337Swp  3.374 596 4161
caseb6468rte 6,468 1,295 9,000

* Widely used in planning and operations: case6470rte 6,470 1,330 9,005

case6495rte 6,495 1,372 9,019

* Day-ahead electricity markets, reliability assessment case6bibrte 6515 1388 0037

* Benchmark set: 9 realistic, large-scale cases from MATPOWER
* Training instances: 300 random variations

* Test instances: 50 random variations

Demand (MW)

* Randomized parameters:

* Peak system-wide load
* Production and start-up costs 0 5 T 15 26
Hour

* Geographic load distribution
* Temporal load profile
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* Computational results
* The best record for solving large-scale SCUC
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Learning to Solve Large-Scale Unit Commitment (Xavier, Qiu, Ahmed (2020))




Learning to Optimize

* MIPLearn

* Flexible, extensible, and easy-to-use open-source framework for learning-enhanced integer
programming
* MIPLearn components
* Initial feasible solutions
* lLazy constraints and user cuts
*  Branching priorities
e  Optimal value

* Modeling languages: JuMP, Pyomo, Gurobi Python API
* Compatible MIP solvers:

*  Commercial: Gurobi, CPLEX, XPRESS

*  Non-commercial: SCIP, Cbc
* Repository:

* https://github.com/ANL-CEEESA/MIPLearn

* Alinson S. Xavier, Feng Qiu. MIPLearn: An Extensible Framework for Learning-Enhanced Optimization.
Zenodo (2020). DOI: 10.5281/zenod0.428756

* License: Open source (3-clause BSD)



https://github.com/ANL-CEEESA/MIPLearn
https://doi.org/10.5281/zenodo.4287567

Learning to Branch

Fractional

Bra nCh & BOU nd A maximization problem | , _ 4, Branching variable x;
X1,%5,x3 € {0,1}

* A schema that exhaustively / \

search a solution space in a

. . . T3z = 0 T3z = 1
mixed-integer programming Fractional Fractional Branching variable x,
problem z=21.65 z = 21.85
¢ Combining with bounding / \
techniques, it provides a solution
with an optimality gap o= 1,2, =0 g3 =1, =1 Branching
. ::nt_eir Frjc;o:al variable x;
° = Z = N
Market transparent and fairness NTEGER
* A better branching strategy can / \
help B&B convergence 23 = 1,83 = 1,31 = 0 sa=Loy=loy =1
Integer Infeasible
z=21
INTEGER, INFEASIBLE

https://mat.tepper.cmu.edu/orclass/integer/node13.html



Learning to Branch

Branch

* Two decisions in branching: node selection and variable selection

* Node selection: best known strategy: always choose the nodes with best
lower bounds

* Variable selection:

* Most infeasible (fractional) branching (MIB): cheap but worst
Soagy(6, 1) = min{x;, 1 — x;}
* Strong branching: best (smallest b&b tree) but expensive
_ Spum (D = max{A7, €} * max{A}, €}
A; : objective value change when branch down
* Reliability branching: a light version of strong branching (RB: A: 1)

(1) at most A variables will be probed at a node
(2) for a given variable, n number of probes are deemed sufficient




Learning to Branch

Benchmark ML-enhaced branching

* Alvarez, Alejandro Marcos and Louveaux, Quentin and Wehenkel, Louis (2017), A
machine learning-based approximation of strong branching, INFORMS Journal On
Computing, 29(1):185-195

* Key idea: use machine learning to mimic strong branching; a universal model for all
MIPs

* Features

* Static problem features
* Computed fromc, A4, b

* Dynamic problem features
* The solution of the problem at the current B&B node
* E.g., up and down fractionalities of a variable

* Dynamic optimization features
* Overall state of the optimization

* E.g., statistic features of objective value changes regarding a certain variable



Learning to Branch

Exploit instance similarity in routinely solved optimizazation

* Motivation

* Most industry applications are routinely solved optimization problems sharing high
similarity, e.g., constraint matrix, right-hand sides

* Dedicated ML models for a routinely solved optimization problem should work
better than a generic ML model

* Revised learning to branch approach
* Per variable: each variable has its own ML model
* Per group: a group of relevant variables share a ML model
* Per generator: time index is ignored; e.g., is_on[g,-] v.s. is_on[g,t])
* Pertime: generator index is ignored; e.g., is_on[,t] v.s. is_on[g,t])
* Per type: time and generator indicies are ignored; e.g., is_on v.s. is_on[g,t]




Learning to Branch

Experiment setup
* Home-made branch&bound MIP solver, using Gurobi for solving LPs
ML model: Extremely Randomized Trees (ExtraTree)

* 5 realistic power systems, 24-hour SCUC

Network ‘Hours Generators Buses Lines ‘ Variables Rows Binaries

casel888rte | 24 296 1,888 2,531 | 235591 196,783 41,232
casel951rte | 24 390 1,951 2,596 | 266,088 244,220 54,144
case2848rte | 24 544 2,848 3,776 | 377,760 340,228 71,904
case3012wp | 24 496 3,012 3,572 | 357,146 305,076 59,712
case3375wp | 24 590 3,374 4,161 | 413,161 357,065 71,856

* Rb:100:inf (practical strong branching) used to collect data




Learning to Branch

Branching sore prediction experiments
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Figure 1  Cross-Validation Evaluation (case1888rte, 24h, value after logarithm) with MSE




Learning to Branch

Impact on solving SCUC with B&B

Table 4 Relative MIP Gap, node_1imit=1000

Instances Relative MIP gap (%)

Hours Network |MIB RB:100:8 ML:ET ML:PNA ML:PTI ML:PGE ML:PV
24  casel888rte | 1.78 0.96 1.31 1.35 0.90 1.22 0.88
24  casel951rte |0.41 0.20 0.23 0.24 0.20 0.22 0.20
24  case2848rte | 0.83 0.42 0.54 0.59 0.45 0.58 0.41
24 case3012wp | 0.29 0.02 0.08 0.01 0.02 0.01 0.04
24  case3375wp | 0.48 0.12 0.52 0.46 0.50 0.41 0.48

Average 0.76 0.35 0.54 0.53 0.41 0.49 0.40




Learning to Branch

Impact on solving SCUC with B&B

Table 5 Relative MIP Gap, node_1imit=10000

Instances Relative MIP gap (%)

Hours Network |MIB ML:ET ML:PNA ML:PTI ML:PGE ML:PV
24  casel888rte | 1.75 1.13 1.20 0.66 1.03 0.61
24  casel951rte [0.37 0.11 0.11 0.08 0.11 0.08
24 case2848rte | 0.77 0.43 0.47 0.33 0.46 0.30
24 case3012wp [ 0.27 0.05 0.01 0.01 0.01 0.02
24  case3375wp |0.45 0.51 0.42 0.47 0.31 0.44

Average 0.72 045 0.44 0.31 0.39 0.29

* Similar performance can be observed in pre-solved instances




Learning to Optimize

* Future work
* LP relaxation
* Large-scale MIPs
* Cut generation

* Find valid and useful cuts
* Generate cuts
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