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The work in this presentation is based on:

Learning to solve large-scale security-constrained unit commitment problems
Álinson Xavier, Feng Qiu, Shabir Ahmed
INFORMS Journal on Computing 33 (2), 739-756

Exploiting Instance and Variable Similarity to Improve Learning-Enhanced 
Branching
Xiaoyi Gu, Santanu S. Dey, Feng Qiu, Alinson Axavier, 
(in preparation)

A relevant presentation
10-12AM on July 19 Tuesday, Governor’s square 9
Frontier of Power System Optimization and Simulation
Solving large-scale SCUC with MIPLearn+UnitCommitment.jl
Alinson Xavier



• Security constrained unit commitment (SCUC)
• seek most cost-effective generator commitment and production output levels
• the most fundamental mixed-integer programming problem in power systems

• electricity market clearing
• $400 billion annually; 0.1 optimality gap in 20 mins; often ends up with large gaps

• reliability analysis, production cost modeling, etc.
• Increasingly challenging

• new energy components, e.g., combined cycle, energy storage, distributed energy resources
• sub-hourly commitment, e.g., 15-min commitment
• uncertainties

• Things that don’t work
• Cutting planes 
• Strong formulations
• Decomposition 

Learning to Optimize 
Problem in focus



• Relevant work (prior to 2017)
• Solve SCUC using Artificial Neural Networks:

• Sasaki, Watanabe, Kubokawa, Yorino & Yokoyama (1992)
• Wang & Shahidehpour (1993)
• Walsh & O’mally (1997)
• Liang & Kang (2000)

• Use ML to enhance MILP solvers:
• Alvarez, Wehenkel, Louveaux (2014)
• Alvarez, Louveaux, Wehenkel (2017)
• Khalil, Dilkina, Nemhauser, Ahmed, Shao (2017)

• Our perspective
• General framework but NOT application-agnostic
• Help solvers become progressively better over time

Learning to Optimize 



Learning to Optimize 

• Learning security constraints 
• N-1 contingency criteria (transmission/security constraints) are fundamental reliability requirements 

enforced by NERC
• Security constraints have large impact on performance:

• Quadratic number, typically very dense
• Very few are actually binding, but hard to tell in advance

• Contingency Oracle: Predict which contingency constraints should be added to the relaxation and 
which should be omitted

• Training phase:
• Solve problem without any transmission constraints
• Add small subset of most-violated constraints and resolve
• Repeat until no further violations are found

• Test phase: If constraint was necessary for at least 1% of training cases, add at start, then follow 
previous algorithm



• Learning initial feasible solutions
• Primal bounds are still a bottleneck

• Modern formulations/solvers usually yield very strong dual bounds
• Most time is spent finding high-quality primal solutions

• Warm start: find, among large set of previous solutions, ones that are likely to work well as 
warm starts in MILP solvers

• Training phase (instance-based learning):
• Solve each training instance and store its solution

• Test phase:
• Find k training instances 

closest to the test instance
• Use their k optimal solutions

(or partial optimal solutions) 
as warm starts

Learning to Optimize



• Learning affine subspaces
• Optimal SCUC solutions have a number of patterns:

• Some units are operational throughout the day
• Some units are only operational during peak demand

• Affine subspace: Find subspaces (described by a set of hyperplanes) where the solution is 
very likely to reside

• Training phase (instance-based learning):
• Consider a fixed set of candidate hyperplanes
• Build supervised models (e.g., SVM) to predict if hyperplane is satisfied. Discard models with low 

precision or recall
• Test phase:

• Predict which hyperplanes are likely to satisfied using previous model and add them to the 
relaxation

Learning to Optimize



• Learning affine subspaces
• Hyperplanes considered:

• xgt= 0
• xgt = 1
• xgt= xg,t+1

• Classifier: Support Vector Machines
• Training high-quality models:

• Discard hyperplanes with very unbalanced 
labels

• Measure precision and recall using k-fold cross 
validation

• Discard models with low recall or precision

Learning to Optimize



Security-Constrained Unit Commitment: Overview
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• SCUC: Find cost-efficient power generation schedule, subject to:
• Production during each hour must satisfy demand
• Power flows must be within safe limits
• Other physical, operational & economic constraints

• Widely used in planning and operations:
• Day-ahead electricity markets, reliability assessment

• Benchmark set: 9 realistic, large-scale cases from MATPOWER

• Training instances: 300 random variations

• Test instances: 50 random variations

• Randomized parameters:
• Peak system-wide load
• Production and start-up costs
• Geographic load distribution
• Temporal load profile

Learning to Optimize

• Computational results



Learning to Optimize
• Computational results

• The best record for solving large-scale SCUC

Learning to Solve Large-Scale Unit Commitment (Xavier, Qiu, Ahmed (2020))



Learning to Optimize
• MIPLearn

• Flexible, extensible, and easy-to-use open-source framework for learning-enhanced integer 
programming

• MIPLearn components
• Initial feasible solutions
• Lazy constraints and user cuts
• Branching priorities
• Optimal value

• Modeling languages: JuMP, Pyomo, Gurobi Python API
• Compatible MIP solvers:

• Commercial: Gurobi, CPLEX, XPRESS
• Non-commercial: SCIP, Cbc

• Repository:
• https://github.com/ANL-CEEESA/MIPLearn
• Alinson S. Xavier, Feng Qiu. MIPLearn: An Extensible Framework for Learning-Enhanced Optimization. 

Zenodo (2020). DOI: 10.5281/zenodo.428756
• License: Open source (3-clause BSD)

https://github.com/ANL-CEEESA/MIPLearn
https://doi.org/10.5281/zenodo.4287567


Branch & Bound 

• A schema that exhaustively 
search a solution space in a 
mixed-integer programming 
problem

• Combining with bounding 
techniques, it provides a solution 
with an optimality gap

• Market transparent and fairness 

• A better branching strategy can 
help B&B convergence 

Learning to Branch

https://mat.tepper.cmu.edu/orclass/integer/node13.html

A maximization problem
Branching variable 𝑥!

Branching variable 𝑥"

Branching 
variable 𝑥#

𝑥!, 𝑥", 𝑥# ∈ {0,1}



Branch 
• Two decisions in branching: node selection and variable selection

• Node selection: best known strategy: always choose the nodes with best 
lower bounds 

• Variable selection: 
• Most infeasible (fractional) branching (MIB): cheap but worst

𝑆 !"# 𝑖, 𝐼 = min{𝑥$, 1 − 𝑥$}
• Strong branching: best (smallest b&b tree) but expensive 

𝑆 !"# 𝑖, 𝐼 = max 0Δ$%, 𝜖 ∗ max 0Δ$&, 𝜖
0Δ$%: objective value change when branch down

• Reliability branching:  a light version of strong branching (𝑅𝐵: 𝜆: 𝜂)
(1) at most 𝜆 variables will be probed at a node 
(2) for a given variable, 𝜂 number of probes are deemed sufficient

Learning to Branch



Benchmark ML-enhaced branching
• Alvarez, Alejandro Marcos and Louveaux, Quentin and Wehenkel, Louis (2017), A 

machine learning-based approximation of strong branching, INFORMS Journal On 
Computing, 29(1):185–195 

• Key idea: use machine learning to mimic strong branching; a universal model for all 
MIPs

• Features 
• Static problem features

• Computed from c, 𝐴, 𝑏
• Dynamic problem features

• The solution of the problem at the current B&B node 
• E.g., up and down fractionalities of a variable

• Dynamic optimization features
• Overall state of the optimization 
• E.g., statistic features of objective value changes regarding a certain variable 

Learning to Branch



Exploit instance similarity in routinely solved optimizazation
• Motivation

• Most industry applications are routinely solved optimization problems sharing high 
similarity, e.g., constraint matrix, right-hand sides

• Dedicated ML models for a routinely solved optimization problem should work 
better than a generic ML model

• Revised learning to branch approach
• Per variable: each variable has its own ML model 
• Per group: a group of relevant variables share a ML model 

• Per generator: time index is ignored; e.g., is_on[g,-] v.s. is_on[g,t])
• Per time: generator index is ignored; e.g., is_on[,t] v.s. is_on[g,t])
• Per type: time and generator indicies are ignored; e.g., is_on v.s. is_on[g,t] 

Learning to Branch



Experiment setup
• Home-made branch&bound MIP solver, using Gurobi for solving LPs

• ML model: Extremely Randomized Trees (ExtraTree)

• 5 realistic power systems, 24-hour SCUC

• 𝑅𝑏: 100: 𝑖𝑛𝑓 (practical strong branching) used to collect data

Learning to Branch



Branching sore prediction experiments

Learning to Branch



Impact on solving SCUC with B&B

Learning to Branch



Impact on solving SCUC with B&B

Learning to Branch

* Similar performance can be observed in pre-solved instances



• Future work
• LP relaxation 

• Large-scale MIPs
• Cut generation

• Find valid and useful cuts
• Generate cuts

Learning to Optimize
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