Synchro-Waveforms for Situational Awareness with Application to Wildfire Monitoring

IEEE PES General Meeting (July 26, 2021)

Hamed Mohsenian-Rad, Ph.D., IEEE Fellow

Professor and Bourns Family Faculty Fellow
Department of Electrical Engineering, University of California, Riverside
Associate Director, Winston Chung Global Energy Center
Director, UC-National Lab Center for Power Distribution Cyber Security

Acknowledgement: Milad Izadi (Ph.D. Student)

Wildfire and Electric Power Issues

Wildfire in California in 2020¹:

Death: 33

Economic Cost: \$12 Billion

www.npr.org

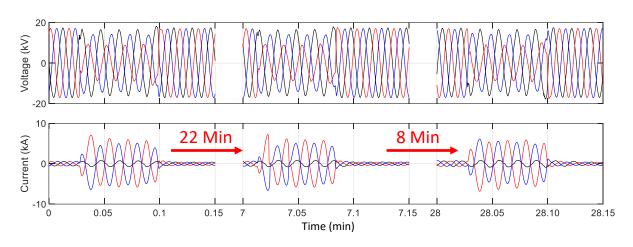
Many of the California wildfires are caused by electric power issues²:

FIRE NAME (CAUSE)	DATE	COUNTY	ACRES	STRUCTURES	DEATHS
1 CAMP FIRE (Powerlines)	November 2018	Butte	153,336	18,804	85
2 TUBBS (Electrical)	October 2017	Napa & Sonoma	36,807	5,636	22
3 TUNNEL - Oakland Hills (Rekindle)	October 1991	Alameda	1,600	2,900	25
4 CEDAR (Human Related)	October 2003	San Diego	273,246	2,820	15
5 NORTH COMPLEX (Under Investigation)*	August, 2020	Butte, Plumas, & Yuba	318,935	2,352	15
6 VALLEY (Electrical)	September 2015	Lake, Napa & Sonoma	76,067	1,955	4
7 WITCH (Powerlines)	October 2007	San Diego	197,990	1,650	2
8 WOOLSEY (Under Investigation)	November 2018	Ventura	96,949	1,643	3
9 CARR (Human Related)	July 2018	Shasta County, Trinity	229,651	1,614	8
10 GLASS FIRE (Under Investigation)*	September 2020	Napa & Sonoma	67,484	1,520	0
11 LNU LIGHTNING COMPLEX (Under Investigation)*	August 2020	Napa, Solano, Sonoma, Yolo, Lake, & Colusa	363,220	1,491	6
12 CZU LIGHTNING COMPLEX (Lightning)	August 2020	Santa Cruz, San Mateo	86,509	1,490	1
13 NUNS (Powerline)	October 2017	Sonoma	54,382	1,355	3
14 THOMAS (Powerline)	December 2017	Ventura & Santa Barbara	281,893	1,063	2
15 OLD (Human Related)	October 2003	San Bernardino	91,281	1,003	6

¹ https://www.fire.ca.gov/incidents/2020/

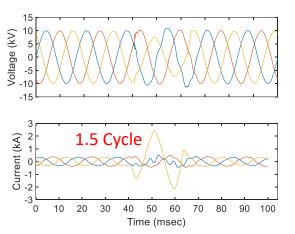
² https://www.fire.ca.gov/media/t1rdhizr/top20_destruction.pdf

Example


Vegetation Caused Burning of a Power Line³

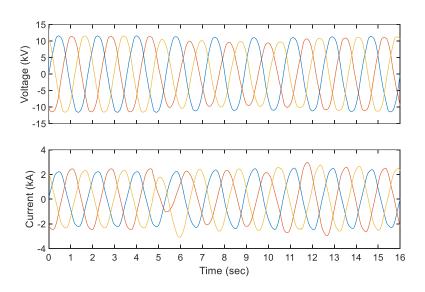
- A tree branch broke and fell on a single-phase section of a line. - It caused a momentary fault that was cleared by a recloser. 1 Hour - Another momentary fault occurred and it was cleared. 24 Hours! 16 Hours - Multiple intermittent momentary faults occurred and cleared. Final fault burned the power line down.

³ J. A. Wischkaemper, C. L. Benner, B. D. Russell, K. Muthu Manivannan, "Application of Advanced Electrical Waveform Monitoring and Analytics for Reduction of Wildfire Risk", in *Proc. of IEEE ISGT*, Washington, DC, 2014.


Advanced Grid Monitoring Can Help

A series of waveform disturbances due to tree-contact on a windy day⁴:

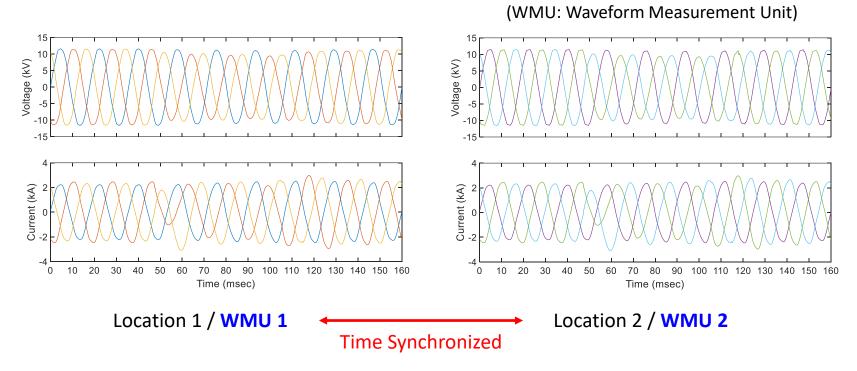
 Other causes, e.g., equipment failure, create their own waveform disturbances⁴:


Shorter Signature (e.g., Sub-Cycle)

⁴ https://pqmon.epri.com/see_all.html

Waveform vs. Synchro-Waveform

Waveform Measurements (PQ Meters, DRF, etc.)⁴:



POW: Point-on-Wave

CPOW: Continuous Point-on-Wave

Waveform vs. Synchro-Waveform

Synchro-Waveform Measurements⁴:

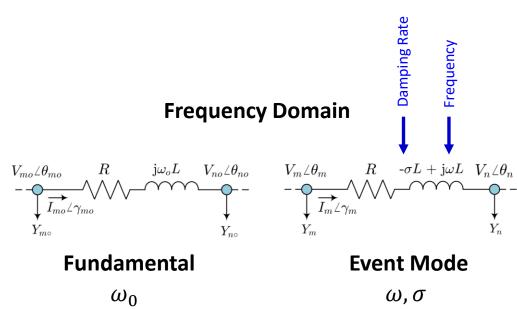
- They observe the same physical phenomena at different locations.
 - Synchro-Waveform Situational Awareness
 - Covering Various Event Signatures (Multi-Cycle, Sub-Cycle, etc.)

- Analysis of waveform disturbances using synchro-waveforms:
 - Detection
 - Characterization
 - Location Identification
 - •

- Analysis of waveform disturbances using synchro-waveforms:
 - Detection⁵ After Characterization During Location Identification Before Change in Area 20 40 60 80 100 0 Time (msec) Lissajous Graph Location 1 / WMU 1 $v_1(t), i_1(t)$ $v(t) = v_1(t)$ Area = $\left| \int_{i(t-t)}^{i(t-T)} v(t) \, di(t) \right|$ Location 2 / WMU 2 $v_2(t), i_2(t)$ $i(t) = i_1(t) - i_2(t)$

⁵ M. Izadi and H. Mohsenian-Rad, "Characterizing synchronized Lissajous curves to scrutinize power distribution synchro-waveform measurements," in *IEEE Trans. on Power Systems*, accepted for publication, May 2021.

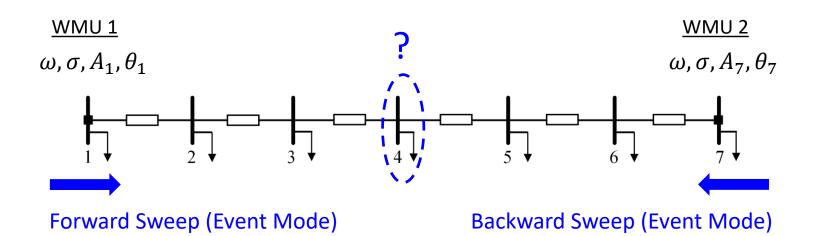
- Analysis of waveform disturbances using synchro-waveforms:
 - **Detection** Multi-Signal Modal Analysis Characterization Location Identification⁶ WMU 1 Original Mode 1 Modes 1 and 2 0.685 0.69 0.695 Number Event starts at t = 0.68 sec WMU 1 of Modes (Sub-Cycle Event) $v_1(t), i_1(t)$ $\rightarrow v_1(t) \approx \sum_{p=1}^{\infty} A_{p,m} e^{\sigma_p t} \cos(2\pi f_p t + \theta_p)$ Also for $i_1(t), v_2(t), i_2(t)$ WMU 2 $v_2(t)$, $i_2(t)$ **Damping Sinusoidal Modes** $(f_n, \sigma_n, A_{nm}, \theta_n)$


⁶ M. Izadi and H. Mohsenian-Rad, "synchronous waveform measurements to locate transient events and incipient faults in power distribution networks," in *IEEE Trans. on Smart Grid*, accepted for publication, May 2021.

- Analysis of waveform disturbances using synchro-waveforms:
 - Detection
 - Characterization
 - Location Identification⁶

• ...

Analysis of Circuit at Event Mode.


⁶ M. Izadi and H. Mohsenian-Rad, "synchronous waveform measurements to locate transient events and incipient faults in power distribution networks," in *IEEE Trans. on Smart Grid*, accepted for publication, May 2021.

- Analysis of waveform disturbances using synchro-waveforms:
 - Detection
 - Characterization
 - Location Identification⁶

• ...

$$k^* = \operatorname*{argmin}_i \Psi_i$$
 Discrepancy

where
$$\Psi_i = \left| V_i^f - V_i^b \right|$$
, $i = 1, ..., 7$.

⁶ M. Izadi and H. Mohsenian-Rad, "synchronous waveform measurements to locate transient events and incipient faults in power distribution networks," in *IEEE Trans. on Smart Grid*, accepted for publication, May 2021.

- Analysis of waveform disturbances using synchro-waveforms:
 - Detection
 - Characterization
 - Location Identification

Asset Monitoring, Wildfire Monitoring, etc.

Other wildfire detection technologies:

www.intecconinc.com

Conclusions

- Synchro-Waveforms: new frontier in power grid situational awareness.
- Waveform Events: may indicate vegetation, fire, incipient faults, etc.
- New method: Detection and Characterization
 - Analysis of synchronized Lissajous graphs
- New method: Location Identification
 - Analysis of the sub-cycle event mode(s)
- The results show accurate and robust performance.
- Synchro-waveform analysis has great potential in wildfire monitoring.

Further Reading

Synchro-Waveform Analysis:

- [1] M. Izadi and H. Mohsenian-Rad, "Characterizing synchronized lissajous curves to scrutinize power distribution synchro-waveform measurements," in *IEEE Trans. on Power Systems*, (accepted), May 2021.
- [2] M. Izadi and H. Mohsenian-Rad, "Synchronous waveform measurements to locate transient events and Incipient Faults in Power Distribution Networks," in *IEEE Trans. on Smart Grid*, (accepted), May 2021.
- [3] M. Izadi and H. Mohsenian-Rad, "A Synchronized lissajous-based approach to achieve situational awareness using synchronized waveform measurements," in *Proc. of the IEEE PES General Meeting*, Jul 2021.
- [4] M. Izadi and H. Mohsenian-Rad, "Event location identification in distribution networks using waveform measurement units," in *Proc. of IEEE PES ISGT Europe*, The Hague, Netherlands, Oct 2020.

Textbook on Smart Grid Sensors:

- Working Principles
- Sample Data Sets
- Data-Driven Methods

Synchro-waveforms
Synchro-phasors
Smart meters
Building sensors
Probing

Cambridge University Press September 2021 360 Pages 120 Examples 150 Exercise Questions

Thank You!

Hamed Mohsenian-Rad, Ph.D., IEEE Fellow

Professor and Bourns Family Fellow
Department of Electrical and Computer Engineering
University of California, Riverside

E-mail: hamed@ece.ucr.edu

Homepage: www.ece.ucr.edu/~hamed