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Background

Accurate estimations of distribution network parameters are essential for modeling, monitoring,
and control in power distribution systems.

 Distribution network topology and parameters in GIS often contain errors.

Objective of network parameter estimation

* Infer the series impedances of distribution lines based on network topology information and data from smart
meters, SCADA system and/or micro-PMUs.

More challenging to estimate the line parameters of distribution network than that of
transmission network

* Single-phase line models of transmission system are insufficient for distribution system.

* Unbalanced nature of distribution system requires estimation of the elements of the 3x3 phase impedance matrix

* The number of line parameters of distribution system is much larger than that of transmission system.
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. Group 1: SCADA system data are used to estimate transmission network parameters of a single-phase model.

* Detect and correct parameter errors. Designed for single-phase line models.

* [Zarco 2000] [Logic 2006] [Castillo 2010] [Lin 2016] [Zhao 2018] [Li 2017]

. Group 2: PMU data are used to estimate line parameters of both transmission and distribution systems.

* Highly accurate estimation. Expensive and require widespread installations of PMUs.

* [Ardakanian 2019] [Asprou 2015] [Kumar 2016] [Khandeparkar 2016] [Gajare 2017] [Ren 2017]

*  Group 3: Smart meter data are used to estimate distribution line parameters.

* Single-phase/balanced 3-phase lines. Do not work with delta-connected secondary.

* [Cunha 2020] [Han 2015] [Lave 2019] [Zhang 2020] [Peppanen 2016] [Wang 2020]
* Unbalanced 3-phase lines with physics-informed graphical learning (GL). Low computation efficiency

* [Wang 2021]

e Motivation: There is a need to accelerate the computation of physics-informed GL model
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« Key ldea: Embed physical equations of power flow in the graphical learning model

Inspired by graphical neural network (GNN)

Difference between physics-informed GL and GNN

* Leverage three-phase power flow-based physical transition functions to replace the deep neural
networks in GNN.

 Key Step: Derive the gradient of voltage magnitude loss function w.r.t. line segment’s
resistance and reactance parameters with an iterative method.

 Estimate distribution line parameters with SGD considering prior estimates of line
parameters and physical constraints.

* Improve computation efficiency with grid partition scheme.



. . @;ES <©IEEE
Overall Framework of Graphical Learning Mode
SGD-Based o .
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* FORWARD and BACKWARD algorithms are time consuming to execute Loss function

«  FORWARE function solve the state variables given the line parameters * SGD-based
parameter updates

. BACKWARD function calculates the gradients with respect to line parameters
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GNN uses a graph’s topological relationships between nodes to incorporate the underlying graph-
structured information in data.

Local transition function x,, = fw,n(ln, Loy Xnen) lne(n))
Output function 0, = g n(xp, 1)

Unique solution of the state can be found with [x]*"1= F,([x]7, [1]).

Sufficient condition for Banach fixed point theorem.

Parameters w of global transition and output functions F,, and G, are updated to minimize a
guadratic loss function

loss =YM_ (0., — 3., )2 ol T
m=1(0m m ) s Xa Neighbor area ~~ . _

X1 X3, The rest of

‘®\fthe graph
sy .7
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Original FORWARD Algorithm
* The original forward algorithm uses transition function to
iteratively update the state (complex voltage) of the GL model
. Iterative power flow equation Algorithm 1 FORWARD(w. t)
Input: Current line parameter w and the time instance f.
— Y sEQut) + Z u Output: Theoretical [x(t)] of the distribution system with line
nn <( n n) kene(m) nk k) parameter .

. Physics-informed transition function

Re(uy)| _ Re(s; @ u}) Re(w,)
[Im(un) _<Z""><[1m(s:;@u;;) +ke ()(Ynk>llm(un)> N
. Re(up) "

State vector x,, = [
Im(un)

Re(s;,)
Im(sy)

feature vector [,, £ [

v Lan

=]

Initialize the source nodes’ state xo(f) with the known
measurement at the source node. Initialize the other nodes’
state x,(f) as defined in ( lﬂ) with balanced flat node
voltage, i.e. u,(t) =[1,e —iT el S]T (n=1,...N).
Construct the initial [x(#)]" by stacking all the initial
x,(t), (n=0,...,N). Construct function F, with w.
repeat

[z(t)]7 T = Fu([=(t)]7, [l(t)]) and fix xq(t) to its
initial value.

T=7+1

6: until ||[[x(t)]” — [z(£)]" | < €rorward - [[[2(2)]7 ]2

return [x(t)] = [=(f)]".

. Convergence of state vector estimates to the fix point is slow
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Original BACKWARD Algorithm

Algorithm 2 BACKWARD(w, T)
Input: Current line parameter w and the first difference

instance batch index X.
Output: Gradient de‘"tfj'.

*  The iterative FORWARD function can be represented 1: [a())=FORWARD(w, 1), t € TUT

e  The BACKWARD algorithm calculates the gradient of
the loss function of first difference voltage time
series w.r.t. line parameters w.

as a recurrent neural network.

2: Construct [z:(f)] as (20), t € T

Caleulate [5(t)] = G([&(1)]), A(t) = 2Ln2OLIO)

* e, (T )’s gradient is difficult to calculate in the . dew(t) BC([&(1)]) ‘ 7]
conventional way. b(t) = Fpr - “oEmy » rte®
4: fort
* Solution: design BACKWARD function following the 5: Initialize z(t)" = 0y 1on, T = 0.
backpropagation principle of Aimeida-Pineda algorithm 6: repeat
for RNN. 7: 2(t)TH = 2(t)7 - A(t) + b(t)
* The gradient can be iteratively calculated using an & r=r +1 s 1o
intermediate variable z(t). o until [l=(2)" - ( ) I < deckward l=(£) "
0. 2ol _ gy Lu@OLIOD gy o g
The convergence of intermediate variable to the fixed ;. end fm-

point is slow.

Ew |I| teT  Hw

return d"g”—m
il )




Fast FORWARD Algorithm

* Inthe physics-informed graphical learning model, the FORWARD function is only used to
compute the state [x], given the parameter set w.
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 Key idea: re-design the FORWARD algorithm without the transition function, as long as it
can solve the state [x] given w.

 Accelerate FORWARD algorithm with two methods

* Derive a nearly-accurate initial estimate of states using linearized three-phase power flow model

* Leverage current injection method to accelerate convergence i T Fas FORWARD(w. D

=4 la

The left hand side is the
deviation of non-substation

nodes from the substations.

~

A is 6N x 6N matrix derived
from topology and line
parameters w.

Input: Parameter w and time index f.

[AI] — ] [AV] Output: Distribution system state [x(f)] when line parameter

1:

[AI] is a vector of three-phase real and

imaginary parts of nodal current mismatch 2
3

J is the Jacobian matrix

The three-phase nodal voltage update [AV] is
solved iteratively with [AI] and J, which are
calculated from the current state.

=

N

is w.
Use (9) to calculate © and 8. Combine #, 8, and the source
nodes’ state x(t) to initialize the state [x(t)].
repeat

Update [AI] and .J based on current state [z:(f)]. Solve
[AI] from (10) and update [x(1)].
until The maximum absolute value in [A[] is less than
€ECIM
return [xz(1)].
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Fast BACKWARD Algorithm S
Algorithm 2 Fast-BACKWARD(w, T)
. Accelerate BACKWARD algorithm Input: Parameter w and batch of time indices T.
Output: Gradient %.
. Improve initialization of intermediate variable : Calculate A(t) and b(t) for t € T as in the BACKWARD

Z(t) instead of using 01x12n function in [14].

for t € T do ) )
Initialize = (t)” = b(t)(I—A(t)) 1. If it is not feasible,
let ,Z[:?f:JD = 01x12n. T = 0.

B2

 z(t)° can be found by solving the update
equation z(t) = z(t) - A(t) + b(t)

o

 If the solution is not feasible (e.g., ill- 4 repeat
conditioned matrices), we still use z(t)? = 5- 2(8)TH = 2(£)7 - A(t) + b(t)
01x12n 6: T=T7+1
7 until ||2(8)7 — 2(0)7 Y < epaciward - [|2(6)7 |2
° - .7 -
Steps 8- 10 are usgd to process th(? & Caleulate 2P2(8WLIOD o in [14], and Zomld) —
converged Z(I:L) to impute the gradlen.t of 2(t)7 - L @OLION gy o
the loss function with respect to the line 9 end for
Oew(T) _ ﬂew{t}
parameters. 10 g m DT 8
i1: return Z£z(2)

T Aw
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Numerical Study - Setup

« 178-bus feeder modified from a real-world 1922-bus distribution circuit of National Grid
» Keep three-phase primary lines
* Single-phase/two-phase loads and renewable generation are reconnected to nearest three-phase buses
* Aseries of line sections without smart meters or sensors are combine into one line section

* 13.2 kV with a peak load of 4.16 MW, 3-phase capacitor 900 kVAR

Sub-net 4 &
< * 177 line sections, 491 loads, 23 solar PV systems
Substation T

Subnotq Fo ", Sub-net 2 P ox * Different phase connections: AN, BN, CN, and ABC

i. e o -~ Sub-net3 ol L o _ _ .

I s Feeder partitioned into 10-subnetworks (parallel estimation)

| N . )
Submets | ' ) . * 15-minute power measurement data from actual smart meters

{ “«~ Sub-net6

AN . ,— = ¢ 15-day time window with 1,440 readings
Sub—netﬂ‘: T Sub-net 7 . ) )

Submet 10 \ * Actual temperature and irradiance data to simulate solar PV gen.

S b

..:i- *

Capacitor setting [1.0 p.u., 1.05 p.u.]

* Winitiar Within & 50% of the correct values.
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 Baseline Methods and Ablation Study
e Linear Maximum Likelihood Estimation (based on linearized power flow)
* Fast GL (FGL), FGL + Constraints (CON)

* Hyperparameters for FGL
* Batch size 10, early stopping patience 10, initial step size 1000, @ = 0.3, # = 0.5, and €4, = 0.1

< IEEE

* Computing Platform
* Workstation with 16 CPU cores (3.0 GHz) and 192 GB RAM

e  Performance Metric

* Mean absolution deviation ratio (MADR) measures the estimation error of distribution line parameters.
MADR 2 y12% 12% X 100%

T .
* Performance of a distribution line parameter estimation algorithm is evaluated by percentage of MADR
improvement

. MADR p;¢iqi—~MADR f;
« MADR imporvement £ ( mittal ! ”‘“l)/M ADR fing X 100%

.I.
W;




Numerical Study — Performance Comparison

MADR Improvement of Parameter Estimation Methods
in the Test Feeder (Average / Choose Optimal Value)

Network LMLE FGL FGL+CON
Whole Network | 10.8% / 13.5%  20.7% / 25.5%  29.4% [/ 30.9%
Sub-Net 1 10.3% / 9.1%  20.1% / 21.6% 23.1% [/ 27.1%
Sub-Net 2 1.3% 1 9.2% 13.6% / 20.9% 26.7% / 29.3%
Sub-Net 3 09% [ 12.2%  345% / 40.8% 41.6% [/ 43.7%
Sub-Net 4 4.5% 1 4.7% 3.1% /1 5.0% 12.4% 1 13.2%
Sub-Net 5 11.6% / 14.8% 20.8% / 22.1% 21.0% / 22.3%
Sub-Net 6 12,09 / 24.3%  37.0% / 62.4% 61.8% / 63.5%
Sub-Net 7 9.3% / 9.3% 16.2% / 18.0% 31.6% / 32.9%
Sub-Net 8 13.9% / 16.5% 22.3% / 23.0% 24.9% / 25.5%
Sub-Net 9 17.3% 1 21.3%  30.8% / 34.5% 37.9% / 38.2%
Sub-Net 10 1.6% I 9.6% 2.2% [ 8.9% 19.0% / 20.4%

Average MADR improvement of 20 random tests

MDAR improvement with subnetwork’s estimated
parameters from the random test with lowest loss

FGL has significantly higher MADR improvement

than LMLE with an additional 9.9% to 12%.

The CON improves the performance of FGL
further with an additional 5.4% - 8.7%

( ES
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Average Runtime (Seconds) of Main Functions of Parameter
Estimation Methods in Sub-networks of different sizes

Method Function 7-Bus  14-Bus  22-Bus
FGL Fast-FORWARD 0.0142  0.0313  0.0519
Fast-BACKWARD 0.068 0.1046 0.1761

GL FOEWARD 03028  1.1603  3.2830
BACKWARD 0.1057 03325  1.0065

LMLE | Gradient Calculation | 0.0079 0.1866 0.8531

Time-consuming functions are the FORWARD and BACKWARD
functions in GL and gradient calculation in LMLE.

* The Fast-FORWARD is over 20 times faster than FORWARD in the

7-bus feeder and over 60 times faster in the 22-bus feeder.

* The Fast-BACKWARD is over 1.5 times faster than BACKWARD in

the 7-bus feeder and 6 times faster in the 22-bus feeder.

The average running time of LMLE in a subnetwork is 245.4 mins.

The average running time of FGL+CON is only 27.5 mins.
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Conclusion

 Developed a fast graphical learning algorithm to estimate line
parameters of three-phase power distribution networks.

* Wide applicability: only requires readily available smart meter data.

* Accelerate graphical learning’s FORWARD algorithm by improving the
initialization of state vector and adopting current injection method

* Accelerate graphical learning’s BACKWARD algorithm by improve the
initialization of intermediate variable

 The fast graphical learning method improves computation efficiency by
as much as 60 times while attaining the accuracy of state-of-the-art
algorithms on a real-world distribution feeder.
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*  Wenyu Wang and Nanpeng Yu, "Parameter Estimation in Three-Phase Power
Distribution Networks Using Smart Meter Data," the 16th International
Conference on Probabilistic Methods Applied to Power Systems, 2020.

* Wenyu Wang and Nanpeng Yu, "Estimate Three-phase Distribution Line
Parameters with Physics-informed Graphical Learning Method," under
review, http://arxiv.org/abs/2102.09023, IEEE Transactions on Power
Systems, 2021, doi: 10.1109/TPWRS.2021.3134952.

*  Wenyu Wang, Nanpeng Yu, and Yue Zhao, "Fast Graphical Learning Method
for Parameter Estimation in Large-Scale Distribution Networks," under
review, 2022.
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