

Fast Graphical Learning Method for Parameter Estimation in Large-Scale Distribution Networks

Prof. Nanpeng Yu Department of Electrical and Computer Engineering Department of Computer Science (Cooperating Faculty) Director of Energy, Economics, and Environment Research Center University of California, Riverside

Outline

- Background
- Literature Review and Motivation
- Brief Review of Physics-informed GL Model for Parameter Estimation
- Accelerate Physics-informed GL Model
 - Fast Forward Algorithm
 - Fast Backward Algorithm
- Numerical Study
- Conclusion

Background

Accurate estimations of distribution network parameters are essential for modeling, monitoring, and control in power distribution systems.

IFFF

- Distribution network topology and parameters in GIS often contain errors.
- Objective of network parameter estimation
 - Infer the series impedances of distribution lines based on network topology information and data from <u>smart</u> <u>meters</u>, SCADA system and/or micro-PMUs.
- More challenging to estimate the line parameters of distribution network than that of transmission network
 - Single-phase line models of transmission system are insufficient for distribution system.
 - Unbalanced nature of distribution system requires estimation of the elements of the 3×3 phase impedance matrix
 - The number of line parameters of distribution system is much larger than that of transmission system.

Literature Review and Motivation

IFFF

- Group 1: <u>SCADA system data</u> are used to estimate <u>transmission network</u> parameters of a single-phase model.
 - Detect and correct parameter errors. Designed for single-phase line models.
 - [Zarco 2000] [Logic 2006] [Castillo 2010] [Lin 2016] [Zhao 2018] [Li 2017]
- Group 2: <u>PMU data</u> are used to estimate line parameters of both transmission and distribution systems.
 - Highly accurate estimation. Expensive and require widespread installations of PMUs.
 - [Ardakanian 2019] [Asprou 2015] [Kumar 2016] [Khandeparkar 2016] [Gajare 2017] [Ren 2017]
- Group 3: <u>Smart meter data</u> are used to estimate distribution line parameters.
 - Single-phase/balanced 3-phase lines. Do not work with delta-connected secondary.
 - [Cunha 2020] [Han 2015] [Lave 2019] [Zhang 2020] [Peppanen 2016] [Wang 2020]
 - Unbalanced 3-phase lines with physics-informed graphical learning (GL). Low computation efficiency
 - [Wang 2021]
- Motivation: There is a need to <u>accelerate</u> the <u>computation of physics-informed GL model</u>

Physics-Informed Graphical Learning Model

- Key Idea: Embed physical equations of power flow in the graphical learning model
- Inspired by graphical neural network (GNN)
- Difference between physics-informed GL and GNN
 - Leverage <u>three-phase power flow-based physical transition functions</u> to replace the <u>deep neural</u> <u>networks</u> in GNN.
- Key Step: Derive the gradient of voltage magnitude loss function w.r.t. line segment's resistance and reactance parameters with an iterative method.
- Estimate distribution line parameters with SGD considering prior estimates of line parameters and physical constraints.
- Improve computation efficiency with grid partition scheme.

Overall Framework of Graphical Learning Model

- FORWARD and BACKWARD algorithms are time consuming to execute
- FORWARE function solve the state variables given the line parameters
- BACKWARD function calculates the gradients with respect to line parameters

Inputs to GL engine

PES

Power & Energy Society*

IEEE

- Each node of the GL model corresponds to a physical bus.
- Nodal state: threephase complex voltage
- Output of GL model
- Loss function
- SGD-based parameter updates

Review of Graphical Neural Network

- Local transition function $\mathbf{x}_n = f_{\boldsymbol{\omega},n}(\mathbf{l}_n, \mathbf{l}_{co(n)}, \mathbf{x}_{ne(n)}, \mathbf{l}_{ne(n)})$
- Output function $o_n = g_{\boldsymbol{\omega},n}(\boldsymbol{x}_n, \boldsymbol{l}_n)$
- Unique solution of the state can be found with $[\mathbf{x}]^{\tau+1} = F_{\omega}([\mathbf{x}]^{\tau}, [\mathbf{l}]).$
 - Sufficient condition for Banach fixed point theorem.
- Parameters ω of global transition and output functions F_{ω} and G_{ω} are updated to minimize a quadratic loss function
- $loss = \sum_{m=1}^{M} (o_m \breve{o}_m)^2$

Original FORWARD Algorithm

- The original forward algorithm uses transition function to iteratively update the state (complex voltage) of the GL model
- Iterative power flow equation

$$u_n = Y_{nn}^{-1} \left((s_n^* \oslash u_n^*) + \sum_{k \in ne(n)} Y_{nk} u_k \right)$$

Physics-informed transition function

$$\begin{bmatrix} Re(u_n)\\ Im(u_n) \end{bmatrix} = \langle Z_{nn} \rangle \left(\begin{bmatrix} Re(s_n^* \oslash u_n^*)\\ Im(s_n^* \oslash u_n^*) \end{bmatrix} + \sum_{k \in ne(n)} \langle Y_{nk} \rangle \begin{bmatrix} Re(u_n)\\ Im(u_n) \end{bmatrix} \right)$$

- State vector $x_n \triangleq \begin{bmatrix} Re(u_n) \\ Im(u_n) \end{bmatrix}$
- feature vector $l_n \triangleq \begin{bmatrix} Re(s_n) \\ Im(s_n) \end{bmatrix}$

Algorithm 1 FORWARD(w, t)

Input: Current line parameter w and the time instance t. **Output:** Theoretical [x(t)] of the distribution system with line parameter w.

- 1: Initialize the source nodes' state $x_0(t)$ with the known measurement at the source node. Initialize the other nodes' state $x_n(t)$ as defined in (10) with balanced flat node voltage, i.e. $u_n(t) = [1, e^{-j\frac{2\pi}{3}}, e^{j\frac{2\pi}{3}}]^T$, (n = 1, ..., N).
- 2: Construct the initial $[x(t)]^0$ by stacking all the initial $x_n(t)$, (n = 0, ..., N). Construct function F_w with w.
- 3: repeat
- 4: $[x(t)]^{\tau+1} = F_w([x(t)]^{\tau}, [l(t)])$ and fix $x_0(t)$ to its initial value.

5:
$$\tau = \tau + 1$$

6: **until** $||[x(t)]^{\tau} - [x(t)]^{\tau-1}||^2 < \epsilon_{\text{forward}} \cdot ||[x(t)]^{\tau-1}||^2$
7: **return** $[x(t)] = [x(t)]^{\tau}$.

Original BACKWARD Algorithm

- The BACKWARD algorithm calculates the gradient of the loss function of first difference voltage time series w.r.t. line parameters ω.
- The iterative FORWARD function can be represented as a recurrent neural network.
 - $e_{\omega}(\mathfrak{T})$'s gradient is difficult to calculate in the conventional way.
 - Solution: design BACKWARD function following the backpropagation principle of Almeida-Pineda algorithm for RNN.
 - The gradient can be iteratively calculated using an intermediate variable z(t).
- The convergence of intermediate variable to the fixed point is slow.

Algorithm 2 BACKWARD (w, \mathfrak{T}) **Input:** Current line parameter w and the first difference instance batch index \mathfrak{T} . Output: Gradient $\frac{\partial e_w(\mathfrak{T})}{\partial w}$. 1: [x(t)]=FORWARD $(w, t), t \in \mathfrak{T} \cup \mathfrak{T}$. 2: Construct $[\hat{x}(t)]$ as (20), $t \in \mathfrak{T}$. 3: Calculate $[\tilde{o}(t)] = \hat{G}([\hat{x}(t)]), \ \hat{A}(t) = \frac{\partial \hat{F}_{w}([\hat{x}(t)], [\hat{l}(t)])}{\partial [\hat{x}(t)]},$ $\hat{b}(t) = \frac{\partial e_{\boldsymbol{w}}(t)}{\partial [\hat{o}(t)]} \cdot \frac{\partial \hat{G}([\hat{\boldsymbol{x}}(t)])}{\partial [\hat{\boldsymbol{x}}(t)]}, \text{ for } t \in \mathfrak{T}.$ 4: for $t \in \mathfrak{T}$ do Initialize $z(t)^0 = \mathbb{O}_{1 \times 12N}, \tau = 0.$ 5: 6: repeat $z(t)^{\tau+1} = z(t)^{\tau} \cdot \hat{A}(t) + \hat{b}(t)$ 7: 8: $\tau = \tau + 1$ until $||z(t)^{\tau} - z(t)^{\tau-1}||^2 < \epsilon_{\text{backward}} \cdot ||z(t)^{\tau-1}||^2$ 9: $\frac{\partial e_{w}(t)}{\partial w} = z(t)^{\tau} \cdot \frac{\partial \hat{F}_{w}([\hat{x}(t)], [\hat{l}(t)])}{\partial w}, \text{ for } t \in \mathfrak{T}.$ 10: 11: end for 12: $\frac{\partial e_{w}(\mathfrak{T})}{\partial w} = \frac{1}{|\mathfrak{T}|} \sum_{t \in \mathfrak{T}} \frac{\partial e_{w}(t)}{\partial w}$ 13: return $\frac{\partial e_w(\hat{z})}{\partial z}$

Fast FORWARD Algorithm

- In the physics-informed graphical learning model, the FORWARD function is only used to compute the state [x], given the parameter set ω.
- Key idea: re-design the FORWARD algorithm without the transition function, as long as it can solve the state [x] given ω.
- Accelerate FORWARD algorithm with two methods
 - Derive a nearly-accurate initial estimate of states using linearized three-phase power flow model
 - Leverage current injection method to accelerate convergence

$[\check{v}]$	_ <i>i</i> -1	[p]
$[\check{\theta}]$	= A	[ǎ]

The left hand side is the deviation of non-substation nodes from the substations.

 \check{A} is 6N × 6N matrix derived from topology and line parameters ω .

$$[\Delta I] = J[\Delta V]$$

 $[\Delta I]$ is a vector of three-phase real and imaginary parts of nodal current mismatch

J is the Jacobian matrix

The three-phase nodal voltage update $[\Delta V]$ is solved iteratively with $[\Delta I]$ and J, which are calculated from the current state.

\sim						
2	Algorithm 1 Fast-FORWARD (w, t)					
	Input: Parameter w and time index t .					
	Output: Distribution system state $[x(t)]$ when line parameter					
	is w.					
	1: Use (9) to calculate \check{v} and $\check{\theta}$. Combine \check{v} , $\check{\theta}$, and the source					
	nodes' state $x_0(t)$ to initialize the state $[x(t)]$.					
	2: repeat					
	3: Update $[\Delta I]$ and J based on current state $[x(t)]$. Solve					
	$[\Delta I]$ from (10) and update $[x(t)]$.					
	4: until The maximum absolute value in $[\Delta I]$ is less than					
	ϵ_{CIM}					
	5: return $[x(t)]$.					

Fast BACKWARD Algorithm

- Accelerate BACKWARD algorithm
 - Improve initialization of intermediate variable $z(t)^0$ instead of using $\mathbf{0}_{1 \times 12N}$
 - $z(t)^0$ can be found by solving the update equation $z(t) = z(t) \cdot \hat{A}(t) + \hat{b}(t)$
 - If the solution is not feasible (e.g., illconditioned matrices), we still use $z(t)^0 = \mathbf{0}_{1 \times 12N}$
- Steps 8 10 are used to process the converged z(t) to impute the gradient of the loss function with respect to the line parameters.

Algorithm 2 Fast-BACKWARD (w, \mathfrak{T})

Input: Parameter w and batch of time indices \mathfrak{T} .

Output: Gradient $\frac{\partial e_w(\mathfrak{T})}{\partial w}$.

- 1: Calculate $\hat{A}(t)$ and $\hat{b}(t)$ for $t \in \mathfrak{T}$ as in the BACKWARD function in [14].
- 2: for $t \in \mathfrak{T}$ do
- 3: Initialize $z(t)^0 = \hat{b}(t)(I \hat{A}(t))^{-1}$. If it is not feasible, let $z(t)^0 = \mathbb{O}_{1 \times 12N}$. $\tau = 0$.
- 4: repeat 5: $z(t)^{\tau+1} = z(t)^{\tau} \cdot \hat{A}(t) + \hat{b}(t)$ 6: $\tau = \tau + 1$ 7: until $||z(t)^{\tau} - z(t)^{\tau-1}||^2 < \epsilon_{\text{backward}} \cdot ||z(t)^{\tau-1}||^2$ 8: Calculate $\frac{\partial \hat{F}_w([\hat{x}(t)], [\hat{l}(t)])}{\partial w}$ as in [14], and $\frac{\partial e_w(t)}{\partial w} = z(t)^{\tau} \cdot \frac{\partial \hat{F}_w([\hat{x}(t)], [\hat{l}(t)])}{\partial w}$, for $t \in \mathfrak{T}$. 9: end for 10: $\frac{\partial e_w(\mathfrak{T})}{\partial w} = \frac{1}{|\mathfrak{T}|} \sum_{t \in \mathfrak{T}} \frac{\partial e_w(t)}{\partial w}$

11: return
$$\frac{\partial e_{w}(\mathfrak{T})}{\partial w}$$

Numerical Study - Setup

- 178-bus feeder modified from a real-world 1922-bus distribution circuit of National Grid
 - Keep three-phase primary lines
 - Single-phase/two-phase loads and renewable generation are reconnected to nearest three-phase buses
 - A series of line sections without smart meters or sensors are combine into one line section

• 13.2 kV with a peak load of 4.16 MW, 3-phase capacitor 900 kVAR

- 177 line sections, 491 loads, 23 solar PV systems
- Different phase connections: AN, BN, CN, and ABC
- Feeder partitioned into 10-subnetworks (parallel estimation)
- 15-minute power measurement data from actual smart meters
- 15-day time window with 1,440 readings
- Actual temperature and irradiance data to simulate solar PV gen.
- Capacitor setting [1.0 p.u., 1.05 p.u.]
- $\omega_{initial}$ within \pm 50% of the correct values.

Baseline Methods and Performance Metric

- Baseline Methods and Ablation Study
 - Linear Maximum Likelihood Estimation (based on linearized power flow)
 - Fast GL (FGL), FGL + Constraints (CON)
 - Hyperparameters for FGL
 - Batch size 10, early stopping patience 10, initial step size 1000, $\alpha = 0.3$, $\beta = 0.5$, and $\epsilon_{stop} = 0.1$
 - Computing Platform
 - Workstation with 16 CPU cores (3.0 GHz) and 192 GB RAM
- Performance Metric
 - Mean absolution deviation ratio (MADR) measures the estimation error of distribution line parameters. MADR $\triangleq \sum_{i=1}^{12\mathfrak{L}} |\omega_i - \omega_i^{\dagger}| \div \sum_{i=1}^{12\mathfrak{L}} |\omega_i^{\dagger}| \times 100\%$
 - Performance of a distribution line parameter estimation algorithm is evaluated by percentage of MADR improvement
 - MADR imporvement $\triangleq \frac{(MADR_{initial} MADR_{final})}{MADR_{final}} \times 100\%$

Numerical Study – Performance Comparison

MADR Improvement of Parameter Estimation Methods in the Test Feeder (Average / Choose Optimal Value)

Network	LMLE	FGL	FGL+CON
Whole Network	10.8% / 13.5%	20.7% / 25.5%	29.4% / 30.9%
Sub-Net 1	10.3% / 9.1%	20.1% / 21.6%	23.1% / 27.1%
Sub-Net 2	7.3% / 9.2%	13.6% / 20.9%	26.7% / 29.3%
Sub-Net 3	9.9% / 12.2%	34.5% / 40.8%	41.6% / 43.7%
Sub-Net 4	4.5% / 4.7%	5.1% / 5.0%	12.4% / 13.2%
Sub-Net 5	11.6% / 14.8%	20.8% / 22.1%	21.0% / 22.3%
Sub-Net 6	12.0% / 24.3%	37.0% / 62.4%	61.8% / 63.5%
Sub-Net 7	9.3% / 9.3%	16.2% / 18.0%	31.6% / 32.9%
Sub-Net 8	13.9% / 16.5%	22.3% / 23.0%	24.9% / 25.5%
Sub-Net 9	17.3% / 21.3%	30.8% / 34.5%	37.9% / 38.2%
Sub-Net 10	7.6% / 9.6%	2.2% / 8.9%	19.0% / 20.4%

- Average MADR improvement of 20 random tests
- MDAR improvement with subnetwork's estimated parameters from the random test with lowest loss
- FGL has significantly higher MADR improvement than LMLE with an additional 9.9% to 12%.
- The CON improves the performance of FGL further with an additional 5.4% 8.7%

Average Runtime (Seconds) of Main Functions of Parameter Estimation Methods in Sub-networks of different sizes

Method	Function	7-Bus	14-Bus	22-Bus
FGI	Fast-FORWARD	0.0142	0.0313	0.0519
FUL	Fast-BACKWARD	0.068	0.1046	0.1761
GI	FORWARD	0.3028	1.1603	3.2839
OL	BACKWARD	0.1057	0.3325	1.0065
LMLE	Gradient Calculation	0.0079	0.1866	0.8531

- Time-consuming functions are the FORWARD and BACKWARD functions in GL and gradient calculation in LMLE.
- The Fast-FORWARD is over <u>20 times faster</u> than FORWARD in the 7-bus feeder and over <u>60 times faster</u> in the 22-bus feeder.
- The Fast-BACKWARD is over <u>1.5 times faster</u> than BACKWARD in the 7-bus feeder and <u>6 times faster</u> in the 22-bus feeder.
- The average running time of LMLE in a subnetwork is 245.4 mins.
- The average running time of FGL+CON is only 27.5 mins.

Conclusion

- Developed a fast graphical learning algorithm to estimate line parameters of three-phase power distribution networks.
- Wide applicability: only requires readily available smart meter data.
- Accelerate graphical learning's FORWARD algorithm by improving the initialization of state vector and adopting current injection method

IFFF

- Accelerate graphical learning's BACKWARD algorithm by improve the initialization of intermediate variable
- The fast graphical learning method improves computation efficiency by as much as 60 times while attaining the accuracy of state-of-the-art algorithms on a real-world distribution feeder.

Relevant Publications

- Wenyu Wang and Nanpeng Yu, <u>"Parameter Estimation in Three-Phase Power</u> <u>Distribution Networks Using Smart Meter Data,"</u> the 16th International Conference on Probabilistic Methods Applied to Power Systems, 2020.
- Wenyu Wang and Nanpeng Yu, "Estimate Three-phase Distribution Line Parameters with Physics-informed Graphical Learning Method," under review, <u>http://arxiv.org/abs/2102.09023</u>, *IEEE Transactions on Power Systems*, 2021, doi: 10.1109/TPWRS.2021.3134952.
- Wenyu Wang, Nanpeng Yu, and Yue Zhao, "Fast Graphical Learning Method for Parameter Estimation in Large-Scale Distribution Networks," under review, 2022.

Contact Information: Nanpeng Yu, nyu@ece.ucr.edu

Thank You

UCR: Wenyu Wang

SBU: Yue Zhao

National Grid: Brent Fedele, Weixiang Zhao, Brian Yung

NYSERDA: Financially Supported by Agreement Number 159613