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Background
• Accurate estimations of distribution network parameters are essential for modeling, monitoring, 

and control in power distribution systems.

• Distribution network topology and parameters in GIS often contain errors.

• Objective of network parameter estimation
• Infer the series impedances of distribution lines based on network topology information and data from smart 

meters, SCADA system and/or micro-PMUs.

• More challenging to estimate the line parameters of distribution network than that of 
transmission network
• Single-phase line models of transmission system are insufficient for distribution system.

• Unbalanced nature of distribution system requires estimation of the elements of the 3×3 phase impedance matrix

• The number of line parameters of distribution system is much larger than that of transmission system.



Literature Review and Motivation
• Group 1: SCADA system data are used to estimate transmission network parameters of a single-phase model.

• Detect and correct parameter errors. Designed for single-phase line models.

• [Zarco 2000] [Logic 2006] [Castillo 2010] [Lin 2016] [Zhao 2018] [Li 2017]

• Group 2: PMU data are used to estimate line parameters of both transmission and distribution systems.

• Highly accurate estimation. Expensive and require widespread installations of PMUs.

• [Ardakanian 2019] [Asprou 2015] [Kumar 2016] [Khandeparkar 2016] [Gajare 2017] [Ren 2017]

• Group 3: Smart meter data are used to estimate distribution line parameters.
• Single-phase/balanced 3-phase lines. Do not work with delta-connected secondary.

• [Cunha 2020] [Han 2015] [Lave 2019] [Zhang 2020] [Peppanen 2016] [Wang 2020]

• Unbalanced 3-phase lines with physics-informed graphical learning (GL). Low computation efficiency
• [Wang 2021]

• Motivation: There is a need to accelerate the computation of physics-informed GL model



Physics-Informed Graphical Learning Model
• Key Idea: Embed physical equations of power flow in the graphical learning model

• Inspired by graphical neural network (GNN)

• Difference between physics-informed GL and GNN

• Leverage three-phase power flow-based physical transition functions to replace the deep neural 
networks in GNN.

• Key Step: Derive the gradient of voltage magnitude loss function w.r.t. line segment’s 
resistance and reactance parameters with an iterative method.

• Estimate distribution line parameters with SGD considering prior estimates of line 
parameters and physical constraints.

• Improve computation efficiency with grid partition scheme.



Overall Framework of Graphical Learning Model
• Inputs to GL engine

• Each node of the 
GL model 
corresponds to a 
physical bus.

• Nodal state: three-
phase complex 
voltage

• Output of GL 
model

• Loss function

• SGD-based 
parameter updates

• FORWARD and BACKWARD algorithms are time consuming to execute

• FORWARE function solve the state variables given the line parameters

• BACKWARD function calculates the gradients with respect to line parameters



Review of Graphical Neural Network
• GNN uses a graph’s topological relationships between nodes to incorporate the underlying graph-

structured information in data.

• Local transition function 𝒙𝒙𝑛𝑛 = 𝑓𝑓𝝎𝝎,𝑛𝑛 𝒍𝒍𝑛𝑛, 𝒍𝒍𝑐𝑐𝑐𝑐 𝑛𝑛 ,𝒙𝒙𝑛𝑛𝑛𝑛 𝑛𝑛 , 𝒍𝒍𝑛𝑛𝑛𝑛 𝑛𝑛

• Output function 𝑜𝑜𝑛𝑛 = 𝑔𝑔𝝎𝝎,𝑛𝑛 𝒙𝒙𝑛𝑛, 𝒍𝒍𝑛𝑛
• Unique solution of the state can be found with [𝒙𝒙]𝜏𝜏+1= 𝐹𝐹𝜔𝜔( 𝒙𝒙 𝜏𝜏, [𝒍𝒍]).

• Sufficient condition for Banach fixed point theorem.

• Parameters 𝜔𝜔 of global transition and output functions 𝐹𝐹𝜔𝜔 and 𝐺𝐺𝜔𝜔 are updated to minimize a 
quadratic loss function

• 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∑𝑚𝑚=1
𝑀𝑀 (𝑜𝑜𝑚𝑚 − �𝑜𝑜𝑚𝑚 )2



Original FORWARD Algorithm
• The original forward algorithm uses transition function to 

iteratively update the state (complex voltage) of the GL model

• Iterative power flow equation

𝑢𝑢𝑛𝑛 = 𝑌𝑌𝑛𝑛𝑛𝑛−1 𝑠𝑠𝑛𝑛∗ ⊘ 𝑢𝑢𝑛𝑛∗ + �
𝑘𝑘∈𝑛𝑛𝑛𝑛(𝑛𝑛)

𝑌𝑌𝑛𝑛𝑛𝑛𝑢𝑢𝑘𝑘

• Physics-informed transition function
𝑅𝑅𝑒𝑒(𝑢𝑢𝑛𝑛)
𝐼𝐼𝐼𝐼(𝑢𝑢𝑛𝑛) = 𝑍𝑍𝑛𝑛𝑛𝑛

𝑅𝑅𝑒𝑒(𝑠𝑠𝑛𝑛∗ ⊘ 𝑢𝑢𝑛𝑛∗ )
𝐼𝐼𝐼𝐼(𝑠𝑠𝑛𝑛∗ ⊘ 𝑢𝑢𝑛𝑛∗ ) + �

𝑘𝑘∈𝑛𝑛𝑛𝑛(𝑛𝑛)

𝑌𝑌𝑛𝑛𝑛𝑛
𝑅𝑅𝑒𝑒(𝑢𝑢𝑛𝑛)
𝐼𝐼𝐼𝐼(𝑢𝑢𝑛𝑛)

• State vector 𝑥𝑥𝑛𝑛 ≜
𝑅𝑅𝑒𝑒(𝑢𝑢𝑛𝑛)
𝐼𝐼𝐼𝐼(𝑢𝑢𝑛𝑛)

• feature vector 𝑙𝑙𝑛𝑛 ≜
𝑅𝑅𝑒𝑒(𝑠𝑠𝑛𝑛)
𝐼𝐼𝐼𝐼(𝑠𝑠𝑛𝑛)

• Convergence of state vector estimates to the fix point is slow



Original BACKWARD Algorithm
• The BACKWARD algorithm calculates the gradient of 

the loss function of first difference voltage time 
series w.r.t. line parameters 𝝎𝝎.

• The iterative FORWARD function can be represented 
as a recurrent neural network.
• 𝑒𝑒𝝎𝝎 𝔗𝔗 ’s gradient is difficult to calculate in the 

conventional way.

• Solution: design BACKWARD function following the 
backpropagation principle of Almeida-Pineda algorithm 
for RNN.

• The gradient can be iteratively calculated using an 
intermediate variable 𝑧𝑧(𝑡𝑡).

• The convergence of intermediate variable to the fixed 
point is slow.



Fast FORWARD Algorithm
• In the physics-informed graphical learning model, the FORWARD function is only used to 

compute the state 𝒙𝒙 , given the parameter set 𝝎𝝎.
• Key idea: re-design the FORWARD algorithm without the transition function, as long as it 

can solve the state 𝒙𝒙 given 𝝎𝝎.
• Accelerate FORWARD algorithm with two methods

• Derive a nearly-accurate initial estimate of states using linearized three-phase power flow model
• Leverage current injection method to accelerate convergence

�𝑣𝑣
�𝜃𝜃

= 𝐴̌𝐴−1
𝑝𝑝
�𝑞𝑞

The left hand side is the 
deviation of non-substation 
nodes from the substations.
�𝑨𝑨 is 6N × 6N matrix derived 
from topology and line 
parameters 𝝎𝝎.

∆𝐼𝐼 = 𝐽𝐽 ∆𝑉𝑉
∆𝐼𝐼 is a vector of three-phase real and 

imaginary parts of nodal current mismatch
𝐽𝐽 is the Jacobian matrix
The three-phase nodal voltage update ∆𝑉𝑉 is 
solved iteratively with ∆𝐼𝐼 and 𝐽𝐽, which are 
calculated from the current state.



Fast BACKWARD Algorithm

• Accelerate BACKWARD algorithm
• Improve initialization of intermediate variable 
𝑧𝑧(𝑡𝑡)0 instead of using 𝟎𝟎1×12𝑁𝑁

• 𝑧𝑧(𝑡𝑡)0 can be found by solving the update 
equation 𝑧𝑧 𝑡𝑡 = 𝑧𝑧 𝑡𝑡 � 𝐴̂𝐴 𝑡𝑡 + �𝑏𝑏 𝑡𝑡

• If the solution is not feasible (e.g., ill-
conditioned matrices), we still use 𝑧𝑧(𝑡𝑡)0 =
𝟎𝟎1×12𝑁𝑁

• Steps 8 - 10 are used to process the 
converged 𝑧𝑧(𝑡𝑡) to impute the gradient of 
the loss function with respect to the line 
parameters.



Numerical Study - Setup
• 178-bus feeder modified from a real-world 1922-bus distribution circuit of National Grid

• Keep three-phase primary lines
• Single-phase/two-phase loads and renewable generation are reconnected to nearest three-phase buses
• A series of line sections without smart meters or sensors are combine into one line section

• 13.2 kV with a peak load of 4.16 MW, 3-phase capacitor 900 kVAR

• 177 line sections, 491 loads, 23 solar PV systems

• Different phase connections: AN, BN, CN, and ABC

• Feeder partitioned into 10-subnetworks (parallel estimation)

• 15-minute power measurement data from actual smart meters

• 15-day time window with 1,440 readings

• Actual temperature and irradiance data to simulate solar PV gen.

• Capacitor setting [1.0 p.u., 1.05 p.u.]

• 𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 within ± 50% of the correct values.



Baseline Methods and Performance Metric
• Baseline Methods and Ablation Study

• Linear Maximum Likelihood Estimation (based on linearized power flow)
• Fast GL (FGL), FGL + Constraints (CON)
• Hyperparameters for FGL

• Batch size 10, early stopping patience 10, initial step size 1000, 𝛼𝛼 = 0.3, 𝛽𝛽 = 0.5, and 𝜖𝜖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.1

• Computing Platform
• Workstation with 16 CPU cores (3.0 GHz) and 192 GB RAM

• Performance Metric
• Mean absolution deviation ratio (MADR) measures the estimation error of distribution line parameters. 

MADR ≜ ∑𝑖𝑖=112𝔏𝔏 𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑖𝑖
† ÷∑𝑖𝑖=112𝔏𝔏 𝜔𝜔𝑖𝑖

† × 100%
• Performance of a distribution line parameter estimation algorithm is evaluated by percentage of MADR 

improvement

• MADR imporvement ≜ �MADR𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−MADR𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
MADR𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 × 100%



Numerical Study – Performance Comparison

• Time-consuming functions are the FORWARD and BACKWARD 
functions in GL and gradient calculation in LMLE.

• The Fast-FORWARD is over 20 times faster than FORWARD in the 
7-bus feeder and over 60 times faster in the 22-bus feeder.

• The Fast-BACKWARD is over 1.5 times faster than BACKWARD in 
the 7-bus feeder and 6 times faster in the 22-bus feeder.

• The average running time of LMLE in a subnetwork is 245.4 mins.

• The average running time of FGL+CON is only 27.5 mins.

MADR Improvement of Parameter Estimation Methods 
in the Test Feeder (Average / Choose Optimal Value) Average Runtime (Seconds) of Main Functions of Parameter 

Estimation Methods in Sub-networks of different sizes

• Average MADR improvement of 20 random tests

• MDAR improvement with subnetwork’s estimated 
parameters from the random test with lowest loss

• FGL has significantly higher MADR improvement 
than LMLE with an additional 9.9% to 12%.

• The CON improves the performance of FGL 
further with an additional 5.4% - 8.7%



Conclusion
• Developed a fast graphical learning algorithm to estimate line 

parameters of three-phase power distribution networks.
• Wide applicability: only requires readily available smart meter data.
• Accelerate graphical learning’s FORWARD algorithm by improving the 

initialization of state vector and adopting current injection method 
• Accelerate graphical learning’s BACKWARD algorithm by improve the 

initialization of intermediate variable
• The fast graphical learning method improves computation efficiency by 

as much as 60 times while attaining the accuracy of state-of-the-art 
algorithms on a real-world distribution feeder.



Relevant Publications
• Wenyu Wang and Nanpeng Yu, "Parameter Estimation in Three-Phase Power 

Distribution Networks Using Smart Meter Data," the 16th International 
Conference on Probabilistic Methods Applied to Power Systems, 2020.

• Wenyu Wang and Nanpeng Yu, "Estimate Three-phase Distribution Line 
Parameters with Physics-informed Graphical Learning Method," under 
review, http://arxiv.org/abs/2102.09023, IEEE Transactions on Power 
Systems, 2021, doi: 10.1109/TPWRS.2021.3134952.

• Wenyu Wang, Nanpeng Yu, and Yue Zhao, "Fast Graphical Learning Method 
for Parameter Estimation in Large-Scale Distribution Networks," under 
review, 2022.

https://intra.ece.ucr.edu/%7Enyu/papers/2020-Parameter-Estimation
http://arxiv.org/abs/2102.09023
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