

Examples of Machine Learning Applications and Experiments at MISO

Yonghong Chen Midcontinent ISO

IEEE PES General Meeting, Denver, CO July 18-22, 2022

MISO work on the application of machine learning (ML)

IFFF

- Neural network has been used for load forecast for ~20 years
- Forecast vendors apply advanced data science methods for load, wind and solar forecast
- Resource portfolio change and increasing uncertainty prompt grid operators to adapt to more probabilistic driven operations
 - Opportunity for more applications of data science
- Examples of recent ML related work
 - Define dynamic reserve requirement
 - Intra-day storage optimization with probabilistic price forecast
 - Synergistic Integration of ML and mathematical optimization for unit commitment (collaboration with University of Connecticut)

Define dynamic reserve requirement

30-min short term reserve (STR) to cover (t+30min, t+3h) uncertainty

╇

- STR was implemented in Dec. 2021 to manage system wide and subregional uncertainties
- Uncertainty distributions present seasonal and hourly differences
 - Net input uncertainty
 - generation outage / derate uncertainty
 - Real time commitment •

ower & Energy Society*

Deriving hourly STR requirement by season through clustering

- Monte Carlo simulation to derive STR demand curves by month and by hour
- Machine learning clustering to group requirements into
 - Two seasons
 - High, medium and low hours

IEEE

Power & Energy Society*

Address sub-regional uncertainty with STR

- Using similar method to analyze sub-regional uncertainty
 - Currently post-reserve deployment transmission constraints ensure zonal reserve deliverability under the largest zonal generation outage events
 - Define the maximum sub-regional/zonal uncertainty events for STR (seasonal and hourly settings)

E	Energyflow _{j,t} STRResponse _{z,e,t}
Σ	z STRResponse _{z,e,t}
S	TRResponse _{z,e,t} ZonalSTR _{z,t}
	ZonalSTR _{z,t}
	STR _{r,t} ZonalSTR _{z,t}

Risk based normal and emergency STR requirements (seasonal update)

- Summer Normal (cover 97% risk)
- — Summer Emergency (cover 99% risk)

- Winter Normal (cover 97% risk)
- Winter Emergency (cover 99% risk)

Addressing Uncertainties Through Improved Reserve Product Design, Yonghong Chen, IEEE Transactions on Power Systems, under review

On-going research: scenario generation, simulation and optimization

Improve prediction

 Wind, load, NSI Improve point forecast by considering recent forecast error

Identify range of probability

 Scenario generation Generate scenarios with trajectories for individual wind, load and interchange for 5-min intervals in the next 3 hours

Developed under ARPA-E SLAC. On-going research:

- EGRET Stochastic simulation to help validate design and operational processes for upcoming 6-8GW solar
- Simplified version of scenario generation for operations

Recommend actions (over a rolling window)

- Rolling horizon RT simulation
- Validate reserve designs Better determine reserve requirements
- Commitment Identify optimal commitment across scenarios to manage uncertainty

B Knueven, M Faqiry, M Garcia, YC Chen, T Roger, W Trevor, Z Junshan, Stochastic Look-Ahead Commitment: A Case Study in MISO, 2021, http://www.optimization-online.org/DB_FILE/2021/10/8660.pdf

Real time storage optimization with probabilistic pricing scenarios

Research project on future real time storage optimization

- Real time rolling look ahead commitment only has 3-h forward information
- Storage with duration longer than 3-h may not be optimized effectively
 - Future prices may be much higher or lower than the immediate 3-h.

IEEE

ower & Energy Society

Probabilistic real time price forecast

- ARIMAX-based, single point RT-LMP forecast was developed
- A probabilistic RT-LMP forecast with a series of statistical scenarios are generated based on the interdependence structure of prediction errors
- LMP forecast scenarios are applied to risk neutral and risk averse versions of LAC commitment

Risk averse robust formulation: minimize current LAC production cost and profit loss outside of LAC

$$\min_{q,u,v} \sum_{g \in \mathcal{G}} \sum_{t=t_1}^{\iota_{end}} C(q_{g,t}, u_{g,t}) + \sum_{r \in \mathcal{R}} W_r,$$

$$\begin{split} W_r \geq &-\sum_{t=t_{end}+1}^T \sum_{g \in \mathcal{G}_{psh,r}} LMP_{g,s,t}^{t_0}[(q_{g,s,t}^{gen} - q_{g,s,t}^{pump}) - \\ &(Q_{g,t}^{gen,DA} - Q_{g,t}^{pump,DA})], \quad \forall r \in \mathcal{R}, \forall s \in \mathcal{S}. \end{split}$$

Risk neutral stochastic formulation: minimize current LAC production cost and expected storage loss outside of LAC

$$\begin{split} \min_{q,u} \sum_{g \in \mathcal{G}} \sum_{t=t_1}^{t_{end}} C(q_{g,t}, u_{g,t}) \\ - \sum_{s \in \mathcal{S}} \sum_{t=t_{end}+1}^T \sum_{g \in \mathcal{G}_{psh}} P_s LM P_{g,s,t}^{t_0}(q_{g,s,t}^{gen} - q_{g,s,t}^{pump}) \end{split}$$

Bing Huang, Arezou Ghesmati, Yonghong Chen, and Ross Baldick, A Pumped Storage Hydro Optimization in the Lookahead Unit Commitment Using Price Forecasts, IEEE Transactions on Power Systems, under review

Synergistic Integration of Machine Learning and Mathematical **Optimization for Unit Commitment**

Surrogate Lagrangian Relaxation

- Decomposition and coordination Lagrangian Relaxation (LR)
 - Reduce complexity exponentially through decomposition
 - Suffer from major difficulties of significant computational efforts and zigzagging of multipliers
- Surrogate Lagrangian Relaxation (SLR)
 - Overcame all major difficulties of traditional LR
 - No need to solve all subproblems. Just one, and not even optimally
 - \Rightarrow "Good enough" solutions with \Downarrow computation and zigzagging
 - \Rightarrow Reduced number of iterations
 - Embedded with the ordinal optimization (OO) concepts
 - Obtaining good-enough solutions quickly by modifying solutions from previous iterations or by solving crude subproblems
- However, the above may not be sufficient when facing new challenges. Will ML be helpful?
 - M. A. Bragin, P. B. Luh, J. H. Yan, N. Yu and G. A. Stern, "Convergence of the Surrogate Lagrangian Relaxation Method," Journal of Optimization Theory and Applications, Vol. 164, Issue 1, 2015, pp. 173-201, DOI: 10.1007/s10957-014-0561-3
 - J. Wu, P. B. Luh, Y. Chen, M. A. Bragin and B. Yan, "A Novel Optimization Approach for Sub-hourly Unit Commitment with Large Numbers of Units and Virtual Transactions," IEEE Transactions on Power Systems, early access, December 2021, DOI: 10.1109/TPWRS.2021.3137842

Complexity grows exponentially as problem size ↑

ML-based decomposition & coordination

(1)

(3)

• UC formulation

 $\operatorname{Min} \sum_{i=1}^{I} \sum_{r=1}^{T} \left[C_{i,r}^{M} x_{i,r} + C_{i,r}^{Start} u_{i,r} + \sum_{b=1}^{B} C_{i,b,r}^{E} p_{i,b,r} \right],$

s.t. system demand, transimission and unit-level constraints.

- SLR subproblems
 - Relax system-wide constraints, and decompose into J subproblen $\operatorname{Min} L_{j}(\lambda_{j}, \mu_{j}, x_{j}, u_{j}, p_{j}), \text{ where} \\
 L_{j}(\lambda_{j}, \mu_{j}, x_{j}, u_{j}, p_{j}) \equiv \left\{ \sum_{i=I_{j}}^{T} \left[C_{i,t}^{Start} u_{i,t} + C_{i,t}^{NL} x_{i,t} + \sum_{b=1}^{B} C_{i,b,t}^{z} p_{i,b,t} \right] + \sum_{i=I_{j}}^{T} \left(-\sum_{i\in I_{j}} \lambda_{t} p_{i,t} + \sum_{i=I_{j}}^{L} \left(\mu_{t,j}^{+} - \mu_{t,i}^{-} \right) \left(\sum_{n=1}^{N} \sum_{i \in (I_{i}\cap I_{i})} \alpha_{n,i} p_{i,t} \right) \right) \right\},$ (2)

s.t. unit-level constraints.

- Input: multipliers and unit initial statuses $\{\lambda, \mu, x_{i,t}^0, p_{i,t}^0, T_i^{On}, T_i^{Off}\}$
 - Should be randomly generated for machine learning
- Output: subproblem solutions $\{x_{i,t}, u_{i,t}, p_{i,t}, p_{i,b,t}\}$
- Good-enough subproblem solutions ~ Feasible and satisfy a simple convergence condition

 $L_{j}(\lambda^{k}, \mu^{k}, x_{j}^{k}, u_{j}^{k}, p_{j}^{k}) < L_{j}(\lambda^{k}, \mu^{k}, x_{j}^{k-1}, u_{j}^{k-1}, p_{j}^{k-1})$

J. Wu, P. B. Luh, Y. Chen, B. Yan and M. A. Bragin, "Synergistic Integration of Machine Learning and Mathematical Optimization for Unit Commitment," submitted to IEEE Transactions on Power Systems, 2022, and Preprint in TechRxiv: https://doi.org/10.36227/techrxiv.19653777.v1

IEEE

- Multilayer perceptron
- Offline and online learning
- Less sub problem solving time

Other experiments and trials: mostly at early stage

- Outage Forecasting:
 - Forecasting of generation outages & derates to help improve situational awareness regarding the maintenance margin
- Net scheduled interchange (NSI) forecast
 - Intra-day time series
 - Difficult to capture behavior around emergency events
- Intelligent alarm
 - Improve the use of flooded alarm in MISO control room
 - Identify false alarm, nuisance alarm, and operating alarm
- Congestion forecast
 - Forecast real time congestion for day ahead market
- Generator startup and shut down profiles
 - Non-dispatchable and may contribute to large ramping needs in certain time window