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MISO work on the application of machine \ [Es

learning (ML)

$IEEE

* Neural network has been used for load forecast for ~20 years
* Forecast vendors apply advanced data science methods for load, wind
and solar forecast

 Resource portfolio change and increasing uncertainty prompt grid
operators to adapt to more probabilistic driven operations
e Opportunity for more applications of data science

 Examples of recent ML related work
e Define dynamic reserve requirement
* Intra-day storage optimization with probabilistic price forecast

» Synergistic Integration of ML and mathematical optimization for unit commitment
(collaboration with University of Connecticut )
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30-min short term reserve (STR) to cover
(t+30min, t+3h) uncertainty

« STR was implemented in 2'5;;‘3:“:‘“
Dec. 2021 to manage uncertainty

system wide and sub-

: - +
reglonal uncertainties
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 Uncertainty distributions
present seasonal and
hourly differences
* Net input uncertainty

» generation outage / derate
uncertainty
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Deriving hourly STR requirement by season

through clustering

Monte Carlo simulation
to derive STR demand
curves by month and by
hour

Machine learning
clustering to group
requirements into

* Two seasons

* High, medium and low
hours
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STR demand curves Systemwide
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Address sub-regional uncertainty with STR (6Fs | @

e Using similar method to analyze sub-regional uncertainty

e Currently post-reserve deployment transmission constraints ensure zonal
reserve deliverability under the largest zonal generation outage events

* Define the maximum sub-regional/zonal uncertainty events for STR
(seasonal and hourly settings)




Risk based normal and emergency STR P
requirements (seasonal update)
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— Summer Normal (cover 97% risk) - Winter Normal (cover 97% risk)

—— Summer Emergency (cover 99% risk) - Winter Emergency (cover 99% risk)
NC STR to cover uncertainty NC STR to cover uncertainty
event much larger than G-1 event much larger than G-1
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Addressing Uncertainties Through Improved Reserve Product Design, Yonghong Chen, IEEE Transactions on Power Systems, under review




On-going research: scenario generation,

simulation and optimization
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Improve prediction Identify range of probability
Scenario generation
Generate scenarios with
trajectories for individual wind,
load and interchange for 5-min
intervals in the next 3 hours

* Wind, load, NSI *
Improve point forecast by
considering recent
forecast error

Uncertainty Analysis, point forecast improvement and Scenario Generation
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RT simulation Stochastic LAC (SLAC)
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Recommend actions (over a rolling window)

* Rolling horizon RT simulation

« Validate reserve designs Better determine
reserve requirements

«  Commitment Identify optimal commitment across

Developed under ARPA-E SLAC. On-going research:

EGRET Stochastic simulation to help validate design and

operational processes for upcoming 6-8GW solar
Simplified version of scenario generation for operations

scenarios to manage uncertainty

B Knueven, M Fagqiry, M Garcia, YC Chen, T Roger, W Trevor, Z Junshan,
Stochastic Look-Ahead Commitment: A Case Study in MISO, 2021,

http:

www.optimization-online.orqg/DB_FILE/2021/10/8660.pd.
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Research project on future real time \ et |
storage optimization
 Real time rolling look ahead 3
] LAC Initial ;4 ¢ jongth = 3,t,,, = 3

commitment only has 3-h ettt Ll

forward information wor R [ -] [ !
* Storage with duration longer T Ty S

than 3-h may not be " An e | - \j

Optlmlzed effeCtIVE|y Fixed to sr:lnlutiun from

previous LAC windows.

e Future prices may be much
higher or lower than the
immediate 3-h.




F $IEEE

Probabilistic real time price forecast s
* ARIMAX-based, single point RT-LMP forecast was =]
developed 7 £ s
* A probabilistic RT-LMP forecast with a series of "
statistical scenarios are generated based on the k. .
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interdependence structure of prediction errors

* LMP forecast scenarios are applied to risk neutral and # | |
risk averse versions of LAC commitment 0 2 o 12 B EE:

Hours
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Risk averse robust formulation: minimize Risk neutral stochastic formulation:

current LAC production cost and profit
loss outside of LAC

minimize current LAC production cost and
expected storage loss outside of LAC
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Bing Huang, Arezou Ghesmati, Yonghong Chen, and Ross Baldick, A Pumped Storage Hydro Optimization in the Look-
ahead Unit Commitment Using Price Forecasts, IEEE Transactions on Power Systems, under review
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Surrogate Lagrangian Relaxation

* Decomposition and coordination - Lagrangian Relaxation (LR)

— Reduce complexity exponentially .
through decomposition

Complexity grows

— Suffer from major difficulties of exponentially N
significant computational efforts and as problem size
zigzagging of multipliers —

* Surrogate Lagrangian Relaxation (SLR)

— Overcame all major difficulties of traditional LR
» No need to solve all subproblems. Just one, and not even optimally
— “Good enough” solutions with U computation and zigzagging
— Reduced number of iterations

— Embedded with the ordinal optimization (OO) concepts

» Obtaining good-enough solutions quickly by modifying solutions
from previous iterations or by solving crude subproblems

* However, the above may not be sufficient when facing new
challenges. Will ML be helpful?
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* M. A. Bragin, P. B. Luh, J. H. Yan, N. Yu and G. A. Stern, “Convergence of the Surrogate Lagrangian Relaxation Method,” Journal of Optimization Theory and

Applications, Vol. 164, Issue 1, 2015, pp. 173-201, DOI: 10.1007/s10957-014-0561-3

* J. Wu, P. B. Luh, Y. Chen, M. A. Bragin and B. Yan, “A Novel Optimization Approach for Sub-hourly Unit Commitment with Large Numbers of Units and Virtual

Transactions,” IEEE Transactions on Power Systems, early access, December 2021, DOI: 10.1109/TPWRS.2021.3137842
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ML-based decomposition & coordination [P | SIEEE

* UC formulation

Min ZZ[CI“x +C ", +ZC¢Jp“], (1)
=l r=l D_I xlt
s.t. system demand, transimission and unit-level constraints. | . | b 77 i
* SLR subproblems l @ﬁ i) —
. . . ¢ | |
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 Should be randomly generated for machine learning * Less sub problem solving time
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J. Wu, P. B. Luh, Y. Chen, B. Yan and M. A. Bragin, “Synergistic Integration of Machine Learning and Mathematical Anitialization & loading = Solve subproblemms by DNN

Optimization for Unit Commitment,” submitted to IEEE Transactions on Power Systems, 2022, and Preprint in TechRxiv: mSolve subproblems by 0O or B&C & Check feasibility and SOC
https://doi.org/10.36227/techrxiv.19653777.v1 EUpdate parameters Wother
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Other experiments and trials: mostly at early stage \ (Es

Outage Forecasting:

Forecasting of generation outages & derates to help improve situational awareness regarding
the maintenance margin

 Net scheduled interchange (NSI) forecast

* Intra-day time series
Difficult to capture behavior around emergency events

* Intelligent alarm
* Improve the use of flooded alarm in MISO control room
* |dentify false alarm, nuisance alarm, and operating alarm

 Congestion forecast
Forecast real time congestion for day ahead market

 Generator startup and shut down profiles
*  Non-dispatchable and may contribute to large ramping needs in certain time window



