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Overview

• Objectives:
- Understand data properties
- Set up data for model development and validation efforts
- Develop models to detect, characterize and classify events

• Technical Approach:
- Deploy the expert domain skills and ML/AI approaches to discover

and utilize knowledge for development of data models 
• Significance and Impact:

- Develop useful models, offer recommendations for best practices,
and facilitate initiation of new standardization efforts
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Problem formulation: Given a signal segment , + = [ , + ,… , , + ] ,  from multiple anonymized PMUs
predict event type 0,… , that occurred at [ , + ] by learning from scarce observations and low precision  labels.

Q1: Can  
feature 
learning be 
automated? 

Q4: Can relevant 
labeled PMU 
data from a 
related task be 
used for learning 
on a new tasks? 

Q3: Can models 
be improved by 
using PMU 
data from 
simulations? 
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Q2: Should 
models 
learn from 
more data 
or from 
better data?

Problem Statement

Yes – Multi-channel filtering by CNN

Use both if data is small 

Yes, but need 3 phase data

Yes - transfer learning 
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Target

Streaming

Event cataloguing
Novelty detection

Continuation of work

One-class distributional 
model of normal events

Line fault detection 
(supervised)

Supervision

Semi-supervised

Supervised

LocIT
Multivariate Transfer Learning

SKNNO

Convolutional Neural 
Networks

Multi-class 
SC-CNN

Multi-class 
PCE-CNN

Multi-class 
SCE-CNN

Simulated

SVM
Supervised

Feature extraction

Supervision

- Line, transformer fault detection
- Frequency event detection

Rectangle Area

RF

CB
Supervised

Streaming

MLP

LR

SVM

Convolutional Neural 
Networks

Streaming SC-
CNN 2

Streaming PCE-
CNN 2

Streaming SCE-
CNN 2

kNNO & iNNE

Unsupervised

4

Feature extraction

- Line, transformer, frequency 
event detection

Line faults categorization

Experimental Approach
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Convolution-based Fault Detection Utilizing Timeseries 
Synchrophasor Data from Phasor Measurement Units
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Q1: Can feature learning be automated? Yes. Design automated event detection systems that doesn’t rely 
on extensive manual study of data and feature engineering.

• Objective: Develop an end-to-end supervised learning method with automated feature learning for fault 
detection (line faults) using sparse PMUs.

• Challenges: Sparse PMUs don’t necessary cover all geo areas. Noisy data. Unknown event locations. Scalability 
of detection models.

• Proposed solution: Introduced a robust set of automated data preprocessing steps. Introduced CNN based 
models (PCE-CNN, SCE-CNN, SC-CNN), each introduces a different way of learning features.

• Results: Data from western interconnection were used. 2016 used for training and 2017 used for testing. 
Testing showed robust detection in multiple settings with AUC of 83%. More results are expected soon.

Extension: Voltage level aware CNN classification based on sliding window technique.
1. PMUs were split into voltage levels (134kV, 240kV, 300kV, 500kV) following a preprocessing scheme
2. From 55s Soft-DTW preprocessed signal, a 30s window is slid, taking those values as separate 

training instances for the 3 channels.
3. Sliding window data is passed to one of 3 CNN architectures (VL-CNN-MC is on the right). Each voltage level is 

processed separately before uniting the inferred features from all voltage. Results are in progress.

Publication: Alqudah, M., Pavlovski, M., Dokic, T., Kezunovic, M., Obradovic, Z. “Convolution-based Fault Detection 
Utilizing Timeseries Synchrophasor Data from Phasor Measurement Units,” IEEE Transactions on Power Systems, 
14 Dec, 2021 (Early Access)
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Hierarchical Convolutional Neural Networks for Event 
Classification on PMU Measurements
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Q2: Should models learn from more data or from better data? Use both, if the data is 
small.
• Objective: Develop a multi-class event classification model using sparse PMUs. Where line-

faults, fundamental frequency and normal events are detected.
• Challenges: Lack of high-quality labels, in-complete labeled data, inaccurate labels, noisy 

data, sparse PMUs. 
• Proposed Solution: Utilize labels inspected by domain experts in addition to original labels. 

Introduce hierarchical convolutional neural networks. 
• Results: Models were trained on 2016 data and tested on 2017 (Int. B). Accuracies of 89% to 

94% were obtained depending on how much domain experts are involved. Manual labeling 
Scenarios:  
• Scenario 1: When domain expert's time is extremely limited

Recommendation: Manually inspect and label at least 2 moths of data to receive 
satisfactory performance.

• Scenario 2: When there are capacity for domain experts to fully inspect data
Recommendation: Inspect of 8 months to receive high performance for 
automated detection models.

Publication: M. Pavlovski, M. Alqudah, T. Dokic, A. A. Hai, M. Kezunovic and Z. Obradovic,
"Hierarchical Convolutional Neural Networks for Event Classification on PMU Measurements,"
in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-13, 2021, Art no.
2514813, doi: 10.1109/TIM.2021.3115583.
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Line Faults Classification using Three Phases
Q3: Can models be improved by using PMU data from simulations? Yes.
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• Objective: Develop a supervised learning method to classify transmission line faults using
PMU Measurement from two source of data.

• Challenges 1:It is difficult to separate PP (or 3P) from PP-G (or 3P-G) faults using field-
recorded data.

• Challenges 2: There are fewer examples of PP, PPG,3P, and 3P-G faults compared to P-G faults 
in the field-recorded dataset.

• Proposed solution. Due to a limited number of examples per type of line faults in field-
recorded PMU data, simulated data obtained from a synthetic system shown in Fig. 1 with 
much more prominent fault types are combined with field-recorded data to generate an 
integrated training set as shown in Fig 2.

• Results. Training the classification models with the combined dataset resulted in a 
classification accuracy of 98.58%. This is a significant improvement over 86.87% to 87.17% 
accuracy obtained by relying on the field-recorded dataset alone.

Publication: H. Otudi, T. Dokic, T. Mohamed, Y. Hu, M. Kezunovic, Z. Obradovic, “Line Faults 
Classification Using Machine Learning on Three Phases Voltages Extracted from Large Dataset of 
PMU Measurements,” Proc. 55th IEEE Hawaii Int’l Conf. System Science, Hawaii, USA, Jan. 2022.

Figure 1:PMU placement in the synthetic IEEE 14-bus power system

Figure 2: Integrated data distribution (training set)
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Transfer Learning for Event Detection from PMU 
Measurements with Scarce Labels
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Q4: Can relevant labeled PMU data from a related task be used for 
learning on a new task? Yes, transfer learning.
• Objective: Develop a line fault, frequency, and transformer event 

detection method that is capable of detecting events based on minimal 
labeled data. 

• Challenges: Supervised learning based event detection methods rely on 
adequate labeled data, which can be costly or infeasible to obtain. 
Leveraging data from a task to another might challenge supervised 
learning algorithms due to the concept and covariate shift assumptions. 

• Proposed solution: Utilize transfer learning technique with semi-
supervised learning detector to leverage a small number of labeled data 
from one task to the target domain without additional labeling effort, 
hence, detecting events without having to rely on event logs of PMU 
data.

• Results: Transfer learning method yields ~13% improvement in AUROC 
when compared to supervised learning algorithms. The performance is 
less affected by the decrease in the number of available labels. 

X-axis: percentage of the labeled source data
LocIT: transfer learning; SKNNO: semi-supervised; 

MLP: supervised; kNNO: unsupervised

Y-
ax

is:
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U
RO

C

2%, 5%, 10%, 25%, 40%, 55%, and 70%, corresponding to 
20, 51, 103, 259, 415, 570, and 726 of labeled source data  

Feature Extraction:

Publication: A. Abdel Hai, T. Dokic, M. Pavlovski, T. Mohamed, D. Saranovic, M. 
Alqudah, M. Kezunovic, Z. Obradovic, “Transfer Learning for Event Detection from 
PMU Measurements with Scarce Labels” IEEE Access, 2021. 
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Outcomes

• Establishing facts:  
– Even now, let alone 5 years from now, collecting PMU data may have diminishing 

returns unless the analysis is automated 
– While automating the analysis of historical data has value, real benefit comes from 

predicting occurrence and mitigating impacts of undesirable events in real-time  
• Offering Recommendations:

- While utilities can gain by sharing data with each other, the real value is in sharing
and following best practices in recording its own data, and then preserving it 

• Facilitating standardization work: 
- Developing and adopting standardized approaches on PMU setting flags, the exact

meaning of the error bits, and a common format for event labeling  
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Being Ready for ML & BD Analytics

• Off-the-shelf machine learning models, while certainly a good starting point for education and 
training, are not going to  achieve good performance for PMU data analytics without tuning   

• The key challenges of ML/AI methods when it comes to analyzing power system data is in 
automating the data labeling, including time-stamping, as well as in capturing long data history

• When focusing  on PMU data and event logs: 
– Improving data quality and recording practices could help in the development of ML/AI 

models in the future. 
– Data labeling should be done not only based on SCADA data but also based on data from 

other recording systems, including GPS time-stamps
– It is essential to synergistically combine machine learning models with power systems 

domain knowledge since data-based models, as powerful as they are, will not be sufficient.
• The low-cost steps for utilities to take now to make the ML/AI approaches ready for big data 

analytics 2 or 3 years from now is to amend and open data sets for ML/AI experts to use.
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Lessons Learned and Next Steps
• Improving data labeling, data quality and recording practices (three-phase vs 

positive sequence) is essential for future ML/AI applications in the utilities
• Providing power system topology and PMU placement helps in distinguishing 

power system events and assessing their importance/impact  
• Using synthetic data has limited value except for the fault studies where the 

events are local, highly distinguishable, and resemble actual events closely.
• Data management of large data sets of streaming data is an expensive effort 

and requires new data management, data wrangling, and data viewing tools 
• Enhancing PMU data with data from other utility recording devices/systems 

(DFRs, DPRs, SCADA), and with weather data can produce significant benefits
• Automating event detection and analysis, evolving from a posterior (historical) 

to a priori (predictive)  formulation, requires further ML/AI research
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