

Grid Performance Assessment Using Synchrophasors

Neeraj Nayak Electric Power Group (EPG)

 Electric Power Group

Outline

- Introduction
- Automated Event Mining (AEM)
- Grid Event Signatures using PMU Data
- Use Case Examples
- Reporting
- Data Quality Assessment
- Summary

Introduction

Why PMU Data Analysis?

- Rapid Adoption of Synchrophasor Technology and deployment of PMUs
- Utilities, ISOs and RCs have Terabytes of Synchrophasor data being archived
- High-resolution (30 frames/second or higher) and time-synchronized data from PMUs provides unprecedented visibility into grid dynamics
- Need for PMU Data Analysis
 - Extract value from large archives to guide planning and operations
 - Assess Grid Performance
 - How Many Events: Where, When, How Severe?
 - Identify weak spots in the grid to guide capital investments and update operating procedures
 - Identify indicators of potential equipment failure and device malfunctions
 - Validate and Set Alarm Thresholds for Real-Time Operations

Automated Event Mining (AEM)

- Automated Tool for PMU data Mining
- Scans through large PMU data archives
 - Data Sources: Flat Files (*.csv, COMTRADE), Databases (MySQL, MSSQL, PI, OpenHistorian)
- Used AEM extensively for PMU data analysis for major Grid Operators, Reliability Coordinators and Utilities
- Key Functionality and Capabilities
 - Automated Mining and Identification of Oscillations, Generation trip and load trip, faults and low voltage events
 - Measurement Anomalies and Device Calibration Issues
 - Data Quality Assessment Summary
 - Automated Report Generation

Architecture - Overview

Data Sources

Visualization

Grid Event Signatures

A: Drop, Rebound and Slow Recovery - Generation Trip

C: Transient and Ringdown - Line Trip

E: Rise and Slow Recovery - Load Trip

G: Oscillations

B: Sharp Change and Immediate Recovery - Fault

D: Transient and Drop - Line Trip and Generation Trip

F:Separation – 2 Signals : Islanding

High Resolution PMU Data allows us to monitor grid dynamics and Event Signatures

Event Types

Automated Analysis of Large amounts of PMU data (weeks, months, years)

- Oscillations
- Generation & Load Trip
- Faults
- Line Trips
- Extended Low voltage events including FIDVR
- Device Calibration Issues
- Equipment Failure
- Grid Stress (Phase Angle Differences)

PES

ØIEEE

Potential Transformer (PT) Failure

Device (PT, CCVT) Calibration Issue

Event Detection Criteria - Examples

- Default criteria or user-defined criteria for detecting events:
 - Faults with voltage below 0.9 per unit for less than 1 second
 - Low voltage events with voltage below 0.9 per unit for more than 1 second
 - Extended low voltage events with voltage below 0.9 per unit for more than 15 minutes
 - Generation and Load trip events with frequency change greater than 30 mHz over a time window of 15 seconds
 - Oscillation Energy exceeding 3 standard deviations of RMS energy in voltage, real and reactive power flows
 - Phase Angle Differences exceeding 10 standard deviations
 - Composite Events with combination of the above criteria

Example

- PMUs: 50
- Signals: 1500
- Events Identified: 49
 - Frequency Events 17
 - Voltage Events 17
 - Oscillations 15

Preprocessing Mining Report							
Refresh	Frequency Event Voltage Event	Oscilation Event Angle Event					
	Charts Raw Data						
Merge Setting	Total Events:599	RampUp	RampDown GenerationLoss	LoadLoss FaultOrLineTrip		Event By:	Signals ~
Event Type Minimum Time Btw Events	25						
Frequency Event (sec.) 15	20 -						
Voltage Event (min.) 15							
Angle Event (min.) 2							
Oscillation Event (min.) 15	10 -						
Report Filter Setting	5-						
 Frequency Event 	2 2 2 5 5	y y y y y y	\$ 5 5 5 5 3 E		8 8 8 8 8 8	3 8 9 8 3 3	8 3 3
Delta Freq. (mHz) 0 >=30							
Exclude Signals 7 Edit	Frequency Events Summa	ary					
 Oscillation Event 	Event Type	T Number	of Involved Signals	T Largest Freq Swing	(mHz) T	Lowest/Highest Freq Point (Hz)	
Event Duration (min.) 0 >=3	FaultOrLineTrip			24		50.043	
Event Sigma 0 >=3							
Angle Pair Disturbance Event	GenerationLoss	14		108		50.142	
No. of Standard Dev. 0 >=20	LoadLoss					50.078	
	RampUp					0.000	
Export Format: LSV *	RampDown					0.000	
	Combined Frequent Ever	nts: (29)					
	Event Start T Event E	ind T Event Type T	Phasor With Largest Freq. Swing 🕇 🛛	argest Freq Swing (mHz) T	Lowest/Highest Freq Point (Hz)	T Number of Involved Signals	
	12/26/18 8:33:37 AM 12/26/1	18 8:33:48 AM LoadLoss	PMU5.Sig1.FR 3	39	49.984	35 🕦	() PGDA
	12/26/18 8:37:48 AM 12/26/1	18 8:37:48 AM FaultOrLineTrip	PMU14.Sig1.FR 2	24	50.043	1 Ф	O PGDA
	12/26/18 8:08:57 PM 12/26/1	18 8:09:09 PM GenerationLoss	PMU46.Sig1.FR -		50.083	7 👁	PGDA
	12/26/18 8:13:33 PM 12/26/1	18 8:13:43 PM LoadLoss	PMU14.Sig1.FR 2	24	50.054	1	PGDA
	12/26/18 8:17:47 PM 12/26/1	18 8:17:53 PM GenerationLoss	PMU40.Sig1.FR -		50.029	35 🛈	(1) PGDA
	12/26/18 8:24:48 PM 12/26/1	18 8:25:00 PM LoadLoss	PMU39.Sig5.FR 3	35	50.035	34 🛈	PGDA

Classification of 49 Events

Frequency Events: Total 17 Events								
Event Type	Count of Events	Largest Frequency Swing (mHz)	Estimated Generation/Load Loss					
Fault/Line Trip	0	-	-					
Generation Loss	8	94	423 MW					
Load Loss	9	108	486 MW					
Oscillation Events : Total 15 Events								
Туре	Count of Events	Largest Amplitude	Event Duration (Mins)					
Inter-Area Oscillations	1	80 Amps	5					
Local/Forced Oscillations	4	60 MVAR	120					
Local Plant Controller Systems	6	15 MVAR	15					
Fast Acting Controllers/HVDC/SSCI	4	3 kV	10					
Voltage Events : Total 17 Events								
Туре	Count of Events	Duration	Largest Voltage Change					
Faults	5	<1sec	0.5 pu					
Extended Low Voltage including FIDVR	6	> 1 sec - > 1 Minute	0.3 pu					
Over Voltage	4	> 1 sec - > 1 Minute	0.2 pu					
Device/Equipment Failure	1	Several Minutes - Hours	0.7 pu					
Device Calibration/Scaling Issues	1	Several Minutes - Hours	0.78 pu					

Oscillation Events

- Grids experience several oscillations events
- Most oscillation events have small amplitude and may not have a significant impact on reliability and stability
- Challenge is to identify the oscillation events that are significant

Oscillation Events

Number of Events detected can be sensitive to Thresholds

Energy/Amplitude Setting (Peak-Peak Amps)	No. of Oscillation Events
5	5230
10	2058
15	666
30	142
50	15
100	3

Intelligent Criteria to Detect Events Based on Change in Energy rather than absolute amplitude values

Root Cause Analysis of Oscillation Events

Band	Oscillation Type/Category	Frequency Range (Hz)	No. of PMU Locations	No. of Events	Highest Peak-Peak Amplitude	Most Severe Location		
1	Speed Governor	0.01 to 0.15	-	-	-	-		
2	Inter-area or Local Forced Oscillations	0.15 to 1.0	10	5	80 Amps	Substation B	1	Event
3	Local Plant Control Systems	1 to 5.0	7	6	15 MVAR	Substation K		Details
4	Fast Acting Controllers, HVDC, SSCI	5 to 15	4	4	3 kV	Substation L)

Local Plant Control System Oscillations (1-5 Hz) - Root Cause			Frequency		Stations	
1.	Faulty PSS Card/Settings	1.	1.2 Hz	1.	Substation A	
2.	Malfunctioning AVR Controls	2.	1.2 Hz	2.	Substation K	
3.	Bad Control Card/Settings – Hydro Plant	3.	1.8 Hz	3.	Substations R, P	
4.	Type 3 & 4 Wind Turbine connected to weak grid	4.	3 Hz	4.	Substation S	
5.	Bad Controller settings – Wind Plant	5.	3.3 Hz	5.	Substation L	
6.	Loss of 2 500/230-kV Transformers (Weak Grid) and Control Malfunction	6.	4 Hz	6.	Substation T	

Oscillation Events

Excitation System Issue 80 A Peak-Peak iliatesi dhalada andustatin dhaliadhal hatin ita ihailiadha ta doni ita ihailiadh 80.00 60.00 40.00 Current 20:00 -**Oscillation Frequency: 1.2 Hz** (VM) KV 1 kV Peak-Peak 144.00đ 143.8 Mag /oltage

IEEE

PES

Power & Energy Society*

This material is based upon work supported by the Department of Energy under Award Number DE-OE0000916

IEEE

PES

precursors 4 days before alarms from

SCADA system

References:

- 1) NASPI Technical Report, "Diagnosing Equipment Health and Mis-operations with PMU data", May 2015
- 2) Bogdan Kasztenny and Ian Stevens, "Monitoring Ageing CCVTs Practical Solutions with Modern Relays to Avoid Catastrophic Failures", March 2007
- 3) David Shipp and Thomas Dionise, IEEE Tutorial, "Switching Transients, Transformer Failures, Practical Solutions", Feb 2016

Events By Date and PMU Location/Substation

Reporting

IEEE PES Power & Energy Society

Data Quality Assessment

PMU Level and Signal Level Data Quality Checks

Summary

- Extract value from large archives of synchrophasor data
- Automated process to assess grid performance
- Assist planning and operation engineers to mine historical data
 - Review of Grid Performance & Reporting
 - Identify Device Calibration and Equipment Anomalies
 - Statistics analysis for baselining
 - Establish Alarm limits for Real-Time Operations
 - Develop Event Library for Training

Thank You