

Time Synchronization Accuracy Issues and Mitigation Measures

Presented by Dr. Yilu Liu The University of Tennessee, Knoxville Oak Ridge National Laboratory

Research main contributors: Henry Yin, Ori Wu, Wei Qiu, Eric Zhan, Will Yao

GPS Timing Signal Loss in FDRs and commercial PMUs

- Historical data of 80 PMUs and 100 FDRs from 2010 to 2012
- Over 50% of FDRs and PMUs sampled experienced GPS loss

Number of FDR GPS losses from 2010 to 2012

GPS Loss Location Statistics

Timing Assistance by Chip Scale Atomic Clock

clock

Atomic

0.0046

1.42e-4

clock-FDR

e-Loran Navigation System Test New York => Knoxville

UTK FDR Test Bench Set-up

GPS vs. Cesium

Std of zoomed data is: 13.443977467 Max of zoomed data is: 38.598620893 Min of zoomed data is: -36.401379107

Cesium vs. UN152A (eLoran)

Std of zoomed data is: 17.782285425 Max of zoomed data is: 61.828816511 Min of zoomed data is: -73.671183489

Comparison of Angle

Comparison of Frequency

- Pulsar-calibrated timing source (PTS)
 - Timing signal received from precise millisecond pulsars
 - Signal processing: folding, de-dispersion, filtering, etc
 - Generated PPS: highly precise but not synchronized

IFFF

Hardware design

- FPGA-based DAQ platform
 - Signal sampling from radio telescope
 - Timing signals generation
- Server-based signal processor
 - Folding, de-dispersion, filtering, etc
- Timing signal generation

Setup of Pulsar-calibrated timing source

- Software design
 - Automatic folding-based pulsar period estimation
 - Searching-based de-dispersion algorithm design
- Work in progress
 - AI-based period adjusting algorithm
 - Multiple pulsar switching algorithm

Generated PPS from PTS

IEEE

- Hybrid timing system
 - PTS: backup timing source
 - GPS: synchronize PTS
- Applications on an Universal Grid Analyzer (UGA)
 - Calculate time drift from frequency and phase angle measurements

Setup of Pulsar-calibrated timing source with UGA

Conclusion

- Accurate and reliable timing source is crucial for power grids wide area monitoring and measurements of **today.**
- The dependency on accurate and reliable timing source is even more critical for operating a fast moving grid dominated by IBRs of tomorrow.

Thank you!