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Project Background and Objectives

• Department of Energy’s Transmission Research Program

• FOA 1861 – Big Data Analysis of Synchrophasor Data (Oct. 2019 – Mar. 2022)

• Project Objectives

• Derive value from the vast amounts of Phasor Measurement Unit (PMU) Data

• Provide actionable information on the use of Machine Learning and Artificial Intelligence methods on large PMU 
datasets

• Enable faster grid analytics and modeling

• First-of-its-kind PMU dataset

• Covers each of three U.S. interconnections (~450 PMU, 30 & 60 Hz reporting rate)

• Covers 2 years including event logs (27 TB)

• Is real data with inconsistencies, varying quality levels, and flaws (66% - 70% good data)

• Is anonymized to protect the data providers (lack of location and topology information)



Technical Accomplishments
• PMU Data Quality Improvement

• Online PMU Missing Value Replacement via Event-Participation Decomposition

• Power System Event Detection

• Graph Signal Processing-based Event Detection; Voltage Event Detection Using Optimization with Structured Sparsity-Inducing Norms

• Power System Event Detection with Bidirectional Anomaly Generative Adversarial Networks

• Power System Event Classification

• Deep Neural Network-based Power System Event Classification

• Classify System Events with a Small Number of Training Labels with Transfer Learning

• Adversarial Attacks on Deep Neural Network-based Power System Event Classification Models

• Power System Dynamic Parameter Estimation

• Dynamic Parameter Estimation with Physics-based Neural Ordinary Differential Equations

• Synthetic Power System Event Data Creation

• pmuBAGE: The Benchmarking Assortment of Generated PMU Events

• Power System Event Signature Library

• A Dynamic Behavior-based Power System Event Signature Library



Voltage Event Detection Using Optimization with 
Structured Sparsity-Inducing Norms

• Background: Is PMU Data Matrix Low Rank?

• Low-rank property of PMU data matrix holds up during normal operations

• Largest singular value of Q data matrix accounts for 99.988% of the variance

• The low-rank property of PMU data matrix is no longer valid during voltage events

• The largest singular value of Q data matrix accounts for only 59.743% of the variance



Row-Sparse Structure of Residual PMU Data Matrix*

• Key Observations
• Voltage related events trigged by system faults are 

often regional events

• The 𝑋 − 𝐿 during voltage event periods have row-
sparse structure

• Rows of residual matrix correspond to PMUs 
highly impacted by the event

• Main Idea
• Decompose the streaming PMU data matrix 𝑋 into

• A low-rank matrix 𝐿, a row-sparse event-pattern 
matrix 𝑆, and a noise matrix 𝐺

• Extract anomaly features from 𝐿 & 𝑆

• Use clustering algorithm to identify power system 
voltage events

* X. Kong, B, Foggo, and N. Yu, “Online Voltage Event Detection Using Optimization with Structured Sparsity-Inducing Norms,“ IEEE 
Transactions on Power Systems, 2022. DOI: 10.1109/TPWRS.2021.3134945.



Overview of Voltage Event Detection Framework

Step 1: Decompose streaming PMU data matrix 
𝑋 = 𝐿 + 𝑆 + 𝐺

 Proposed Algorithm: Proximal Bilateral Random 
Projections (PBRP)

Step 2: Extract anomaly features

 𝑙21 norm of the row sparse matrix 𝑆

 Max temporal difference of low-rank matrix 𝐿

Step 3: Distinguish normal system operation data 
from that of the system voltage events

 Adopt density-based cluster analysis DBSCAN

 Outliers correspond to voltage events



Decompose Matrix with Row-Sparse Structure with 
Proximal Bilateral Random Projection (PBRP)

• 8

⇒

Solution Approach: Coordinate Descent

• Update 𝐿: Closed-form Bilateral Random 
Projection (BRP) enhanced by Power Scheme

• Update 𝑆 with proximal method



Numerical Results and Summary

• Residual PMU data matrices during voltage events have distinctive 
sparsity structure

• Computationally efficient PBRP algorithm is proposed to decompose 
PMU data matrices

• The proposed online voltage event detection algorithm shows better 
accuracy and scalability 



Power System Event Detection via Bidirectional 
Anomaly Generative Adversarial Networks

• Motivation

• Detecting power system events with supervised machine learning algorithms requires a large amount of high quality 
training labels (confirmed events)

• Event detection accuracy drops quickly as the number of training label reduces.

• Develop a Bidirectional Anomaly Generative Adversarial Network (Bi-AnoGAN)-based event detection algorithm, which 
does not depend on a large amount of high quality event labels.

• Main Idea

• Learn two mapping functions that project PMU data samples during normal operating conditions to the noise space 
and then back to the PMU data space.

• A large reconstruction error and discriminator loss → it is very likely that the new PMU sample corresponds to a system 
event.

• Improve computation efficiency with the design of Bidirectional GAN (BiGAN) by training an additional encoder 
network that can directly map a PMU data sample to the noise space.



Overview of System Event Detection Framework

Step 1: Pre-process historical and online 
streaming PMU data

Step 2: Offline training. Train an encoder 𝐸, 
generator 𝐺, and discriminators 𝐷 using PMU 
data during normal operating conditions.

Step 3: Online event detection.

(1) Calculate the difference between original streaming 
PMU data and the reconstructed PMU data

(2) Calculate discriminator loss (Does incoming PMU 
sample come from normal operation periods?)

(3) Calculate anomaly score and compare it against a 
dynamic threshold



Offline Training of Bi-AnoGAN
• Training of Bi-GAN is formulated as a min-max problem

min
𝑮,𝑬

max
𝑫

𝑉(𝑫, 𝑬, 𝑮) = 𝔼𝒙~𝑝(𝒙) 𝑙𝑜𝑔𝑫(𝒙, 𝑬(𝒙)) + 𝔼𝒛~𝑝(𝒛) log(1 − 𝑫 𝑮 𝒛 , 𝒛 )

• Encoder, 𝐸 improves computational efficiency by directly mapping PMU data samples to the noise space

• Training of BiGAN with Wasserstein loss

min
𝑮,𝑬

max
𝑫∈𝒟

𝑉𝒙𝒛(𝑫𝒙𝒛, 𝑬, 𝑮) = 𝔼𝒙~𝑝(𝒙) 𝑫𝒙𝒛(𝒙, 𝑬(𝒙)) − 𝔼𝒛~𝑝(𝒛) 𝑫𝒙𝒛 𝑮 𝒛 , 𝒛

• The 1-Lipschitz constraint on the discriminator function mitigates mode collapse problem and improves convergence of the training 
process

• Encourage cycle consistency by adding conditional entropy constraints

Add 𝑉𝑥 𝑫𝑥 , 𝑬, 𝑮 = 𝔼𝒙~𝑝(𝒙) 𝑫𝒙(𝒙) − 𝔼𝒙~𝑝(𝒙) 𝑫𝒙 𝑮 𝑬 𝒙 to enforce 𝒙 = 𝑮(𝑬 𝒙 )

Add 𝑉𝑧 𝑫𝑧, 𝑬, 𝑮 = 𝔼𝒛~𝑝(𝒛) 𝑫𝒛(𝒛) − 𝔼𝑧~𝑝(𝒛) 𝑫𝒛 𝑬 𝑮 𝒛 to enforce 𝒛 = 𝑮(𝑬 𝒛 )

• Final objective function

min
𝑮,𝑬

max
𝑫𝒙𝒛,𝑫𝒙,𝑫𝒛

[𝑉𝒙𝒛 𝑫𝒙𝒛, 𝑬, 𝑮 + 𝑉𝑥 𝑫𝑥 , 𝑬, 𝑮 + 𝑉𝑧 𝑫𝑧, 𝑬, 𝑮 ]



Online Event Detection

• Anomaly Score Calculation 𝑳 = 𝜆𝑳𝐺 + (1 − 𝜆)𝑳𝐷
• PMU data reconstruction error 𝑳𝐺 = 𝒙 − 𝑮(𝑬(𝒙)) 2

• The discriminator loss 𝑳𝐷 = 𝐵𝐶𝐸(𝑫𝒙𝒛(𝒙, 𝑬(𝒙))). 𝐵𝐶𝐸: binary cross-entropy loss function.

• Dynamic Threshold for Anomaly Score

• Threshold = 𝑚𝑒𝑎𝑛 𝐿𝑡−60:𝑡−1 + 𝑐 × 𝑠𝑡𝑑(𝐿𝑡−60:𝑡−1)

• 𝑐 is a hyper-parameter



Numerical Study Setup and Illustration
• PMU Dataset

• 187 PMUs from Eastern Interconnection

• May 2016 – December 2017

• 807 voltage events, 82 frequency events

• Training Dataset for Bi-AnoGAN

• First operation day’s PMU data in a half year

• Size of training sample

• A window size of 1 second

• 3D tensor: 30 time stamps, 179 PMUs, 4 channels

• Number of training samples in a day 86400

• Training Setup

• Learning rate: 1e-4

• Batch size 256

• 8 hrs of training time on NVIDIA GeForce RTX 2080 Ti GPU voltage event frequency event



Results and Summary

• Pros of Bi-AnoGAN: Computationally efficiency, do not need labels, 
high detection accuracy.

• Cons of Bi-AnoGAN: Network architecture needs to be 
appropriately designed to avoid non-convergence and instability.<2 ms for processing each snapshot of PMU data sample



System Event Identification: Overall Framework
• Formulated as a classification problem

• Normal operation condition, line event, generator event, oscillation event

• Input: 3 dimensional tensor

• Time, PMU ID, and PQ|V|f measurement

• Overall Framework

• Three key modules

• CNN-based Classifier, GSP-based PMU Sorting, Info. Loading-based Regularization



Graph Signal Processing-based PMU Sorting
• Motivation

• Make parameter sharing scheme of Convolutional Neural Classifier more effective

• Main Idea
• Strategically place highly correlated PMUs close to each other

• Solution
• Systematically rearrange PMUs in the input tenors with GSP-based PMU sorting algorithm

Visualization of Spatial Correlation Matrix of PMU Measurementsmin
𝒅

1

2
෍

𝑖=1

𝑁

෍
𝑗=1

𝑁

𝑊𝑖𝑗 𝑑𝑖 − 𝑑𝑗
2

𝒅𝑇𝒅 = 1 𝒅𝑇𝟏 = 0Subject to



Information Loading-based Regularization
• Background

• Abstract Representation of Deep Neural Network based Classifier

• Main Idea
• Control the amount of information compression between the input layer and the last hidden layer of a 

deep neural network

• Balance memorization and generalization

• Algorithm
• Augment the typical cross-entropy loss function with estimated mutual information between the input 

layer and the hidden representation

Low entropy input 
feature space

High entropy input 
feature space



Overall Neural Network Architecture*

• Neural Classifier, Mutual Information Estimator, Loss Function Augmentation

* J. Shi, B. Foggo, and N. Yu, "Power System Event Identification based on Deep Neural Network with Information 
Loading," IEEE Transactions on Power Systems, vol. 36, no. 6, pp. 5622-5632, Nov. 2021.



Numerical Study Results
• Dataset Description

• 2 years of PMU data from Eastern Interconnection

• 1247 labeled Events, 187 PMUs (Training, Validation, Testing)

• Data Augmentation

• Performance on Validation Data

Illustration of Sub-tensor Sampling



Testing Results and Learned Representation

• F1 Scores on Testing Dataset

• Learned Representation

Comparison of representations of different ML methods after linear dimension reduction



Summary and Extensions
• Summary

• Off-the-shelf ML algorithms often do not work well

• Physical-domain knowledge + deep learning is needed

• Information loading helpful in balancing memorization and generalization

• Extensions
• Transfer Learning: PMU and event log data from one electric grid provide useful info. in analyzing the 

behavior of another electric network

• Adversarial attacks and defense: easy to add tailored noise signal to fool event classifier

Example of a small 
perturbation 
computed by 
DeepFool that make 
the model misclassify 
from normal 
operation behavior to 
generator event



Synthetic Power System Event Data Creation

• Why do we need synthetic PMU dataset?

• Researchers/developers of machine learning algorithms for transmission system always identify the lack of large-scale 
and realistic PMU data set as a bottleneck for innovation

• Security concerns, common problem for both academia and industry

• Benchmarking across algorithms is hard when they’re all tested on different data

• Is PMU data generated from dynamic simulation sufficient?

• Advantages

• PMU data generated is consistent with simulated dynamic system

• Simulation model can be configured to answer any hypothetical research questions

• Disadvantages

• IEEE dynamic test cases can not match the complexity of real-world transmission systems

• Parameterization of generic models (e.g. renewables) are extremely difficult to match observed dataset

• Lack realistic details (PMU data in response to real-world events often can not be easily emulated by dynamic models, noise, 
missing values, outliers)



pmuBAGE: The Benchmarking Assortment of 
Generated PMU Events*
• pmuBAGE: the result of training a generative model on ~1,000 real-world power system events in the Eastern 

Interconnection.

• Publicly available at https://github.com/NanpengYu/pmuBAGE

• Advantages: accessibility, homogeneity of results & unprecedented level of realism

• Contains 84 synthetic frequency events and 620 synthetic voltage events

• 4 channels (PQ|V|F), 20 seconds event window length, 100 PMUs

• Key Ideas

• Decompose PMU data during an event into: Event Signatures and Participation Factors

• Event signatures can be separated into two types: inter-event and intra-event

• Physical event signatures are PMU private and are used directly

• Statistical participation factors are synthesized with generative model

* B. Foggo, K. Yamashita, N. Yu, “pmuBAGE: The Benchmarking Assortment of Generate PMU Events – Part I and II”
https://arxiv.org/abs/2204.01095

https://github.com/NanpengYu/pmuBAGE


pmuBAGE – Frequency Events

pmuBAGE frequency event An actual frequency event

The interval between two time indices is 1 / 30 seconds. The presented data is scaled to per unit values.



pmuBAGE – Sample Voltage Event

An actual voltage event pmuBAGE voltage event

The interval between two time indices is 1 / 30 seconds. The presented data is scaled to per unit values.



The Event-Participation Decomposition*
• Decomposes PMU data in an event window into

• A dynamic component shared by all PMUs – the Event Signature

• A static component which varies by PMU – the Participation Factor

• Properties of Physical Event Signatures

• Depend on all PMUs, but don’t depend much on any single PMU.

• Event signatures are PMU private and can be used directly to generate synthetic PMU data.

• Properties of Statistical Participation Factor

• Participation factors are not PMU private by definition.

• They must be synthesized

* B. Foggo and N. Yu, "Online PMU Missing Value Replacement via Event-Participation Decomposition," IEEE TPS, vol. 37, no. 1, pp. 488-496, Jan. 2022.



Overall Framework: Generating synthetic PMU data

• Intra-Event Signature

• Unique components of an event

• The corresponding participation factors are more complicated

• Generated via a deep generative probabilistic program

• Key architectural components

• Feature extraction maps with cascaded convolutional network

• Loss function with feature mapping and quantile loss

• Decompose event signatures into 2 types
• Inter-Event Signature

• Appear repeatedly across events with little variation

• The corresponding participation factors are statistically simple

• Inter-Event participation factors ~ Multivariate Gaussian after 
simple transformation



Correlation Analysis and Inception-Like Scoring

• Max correlation between synthetic and real events is 0.25

• No historical events used to train the model are 
compromised

• Max correlation between synthetic and real PMU 
measurements is 0.205.

• No PMUs used to train the model are compromised

• Quality of generated PMU data samples measured by “Inception-like score”
• Train a standard ResNext model to classify event types of labels “frequency” and “voltage”

• 200 epochs of training with a batch size of 50 with Binary Cross Entropy loss function

• No significant degradation in F1 or F2 scores in 
cross-comparison compared to self comparisons.

• pmuBAGE may serve the community as a standard 
benchmarking tool for event detection and 
classification.

Training-Testing Accuracy F1 F2

Synthetic-Synthetic 99.9% 94.3% 93.3%

Synthetic-Measured 94.3% 94.2% 92.8%

Measured-Measured 99.8% 94.4% 91.2%

Measured-Synthetic 93.2% 94.3% 92.7%



Lessons Learned and Next Steps
• Lessons Learned

• Off-the-shelf machine learning models are often not sufficient

• Physics-based machine learning is the key to developing breakthrough technology in power system data 
analytics.

• The availability of real-world (synthetic) power system data is critical to the accelerated development and 
benchmarking of data-driven algorithms.

• Next Steps

• Pilot demonstrations with partner institutions (EPRI and EPG)

• Deeper integration of physical power system model with machine learning algorithms

• Interpretable machine learning models for PMU data analytics

• Making artificial intelligence algorithms actionable in bulk power system

• Safety and robustness of ML in critical infrastructure systems (bulk power system)

• Closer collaboration between artificial and operator intelligence
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