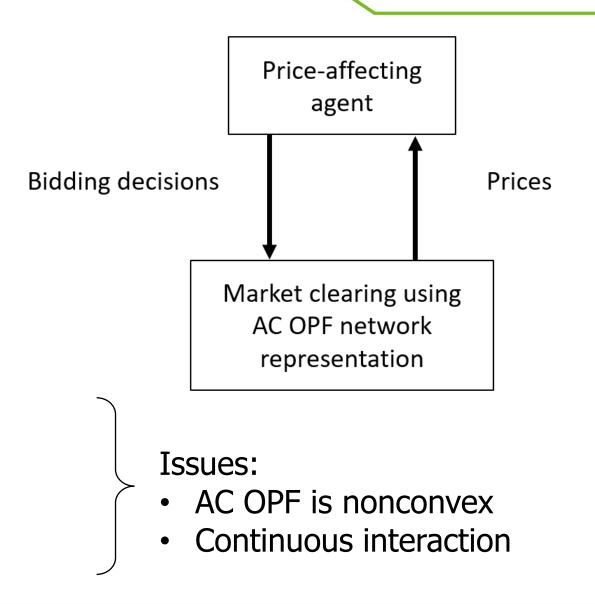


Solving Bilevel Power System Problems Using Deep Convolutional Neural Networks

Domagoj Vlah presenter: Karlo Šepetanc Hrvoje Pandžić


Bilevel optimization

$$\begin{split} & \text{Min } F(x, y) \\ & x \\ & \text{subject to} \\ & G_i(x) \leq 0 \qquad \forall i \\ & y \in \{ \arg\min f(x, y) \colon g_i(x, y) \leq 0 \ \forall i \end{split}$$

y

Upper level:

- energy storage: bids energy quantity
 Lower level:
- AC OPF: determines prices

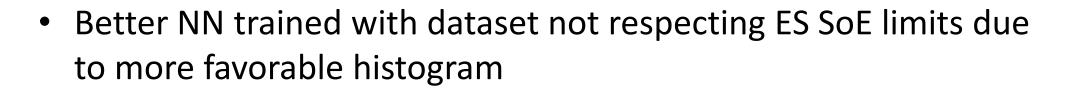
Solution approaches

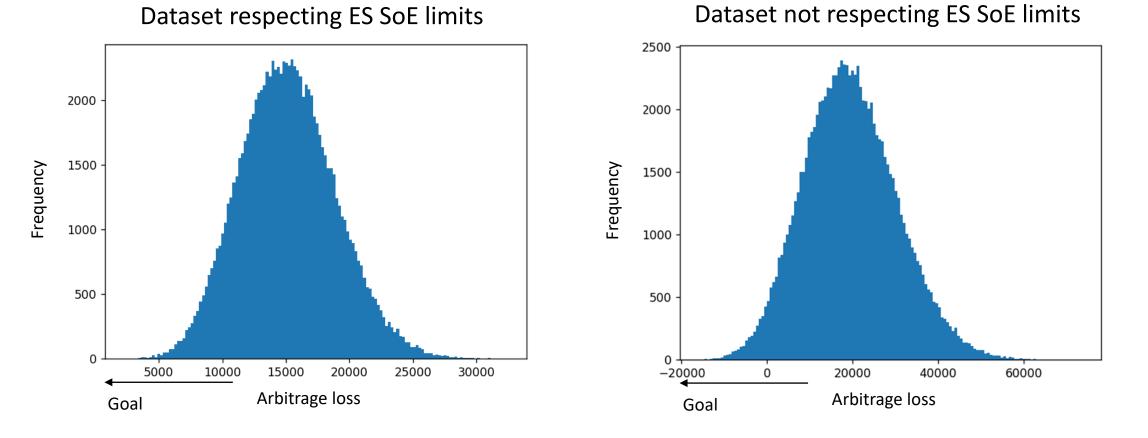
- **Convex Polar Second-Order Taylor Approximation AC OPF** single-level
 - Bilevel AC OPF by Smoothing the Complementary Conditions •

reduction

Bilevel AC OPF using Deep Convolutional Neural Networks

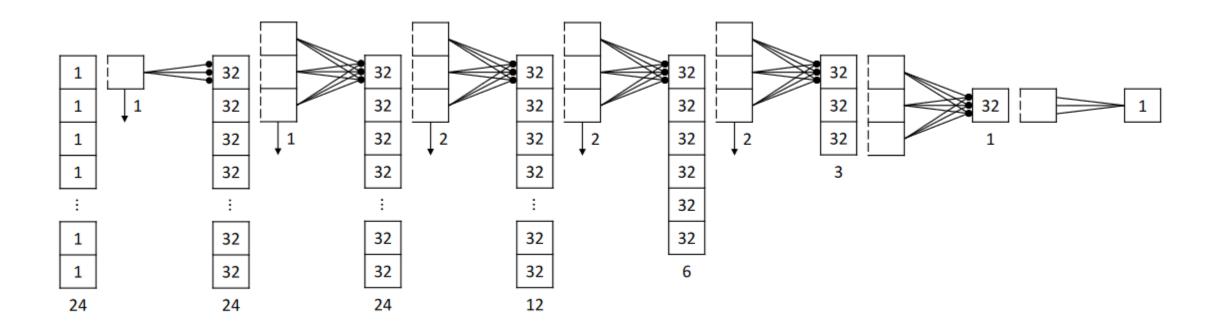
data analytics


Bypassing the lower level


- We approximate objective function (total arbitration profit) with neural network:
 - LL is replaced by its response, i.e. as a function of input variables
- NN represents cumulative profit to reduce the error

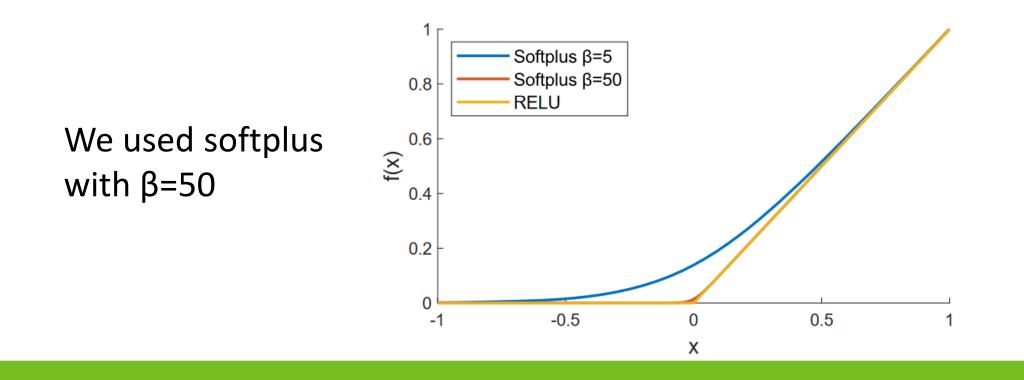
$$\begin{array}{l} \operatorname{Min} \bar{F}(x) \\ x \\ \text{subject to} \\ G_i(x) \leq 0 \qquad \forall i \end{array}$$

Dataset


Power & Energy Society

Convolutional neural network

• Physics informed structure: select time period has lesser impact on distant time periods



Integrating NN in optimization

Activation function:

• Smooth function allows for computing large NN using nonlinear solvers NN evaluation:

• Nested substitutions to reduce the number of variables and constraints

Algorithm

1: repeat

- 2: Generate a new random dataset (10^5 entries)
- 3: Evaluate LL response for the dataset
- 4: Train 60 NNs to approximate LL response
- 5: Optimize the ULs with inserted NNs into objective function
- 6: Determine actual profits by optimizing LL with fixed ES (dis)charging schedule
- 7: Select the best actual solution out of:
 - the best direct result;
 - the result obtained averaging decisions from all optimized NNs;
- 8: For the next iteration, reduce and concentrate the dataset spatial size in the neighborhood of the best solution found from this iteration
- 9: **until** The best solution is worse than in the preceding iteration

Results – accuracy (part 1)

	time [s]	profit	actual profit	Best NN computed profit	Single-level reduction actual profit [1]	DC OPF
1	8386	2016.0583	2016.2954	2011.5968		
2	7158	2016.8395	2016.7695	2018.1744		
		2016.8414			2016.8762	1986 4979
		2016.8416			2010.0702	1900.4979
5	6903	2016.8505	2016.8015	2017.2495		
6	6882	2016.8452	2016.8096	2017.1350		

• 3_lmbd (bus 3)

Iter	time [s]	profit	Best NN actual profit	Best NN computed profit	Single-level reduction actual profit [1]	DC OPF actual profit
	1	1564.0254				
2	8724	1564.5929	1564.6218	1572.8308	1565.2053	1/31 5387
	1	1564.9676				1451.5507
4	9088	1564.9433	1564.9370	1570.1936		

^{• 57}_ieee (bus 1)

[1] K. Šepetanc, H. Pandžić and T. Capuder, ``Solving Bilevel AC OPF Problems by Smoothing the Complementary Conditions -- Part II: Solution Techniques and Case Study," Arxiv, June 2022.

Results – accuracy (part 2)

Iter	time [s]	profit	actual profit	pront	Single-level reduction actual profit [1]	actual
		5503.2526				
2	10186	5503.2608	5512.6547	5520.6102	No solution	4027 1127
3	10159	5503.8406	5512.7558	5519.5750	No solution	4727.1127
4	10192	5503.7870	5512.1032	5513.6247		

• 73_ieee (bus 101)

	Iter	time [s]	$\begin{array}{c} \text{Mean } p_t^{\text{ES}} \\ \text{actual} \\ \text{profit} \end{array}$	actual profit	computed profit	Single-level reduction actual profit [1]	actual
ſ	1	33482	1396.5797	1397.0175	1377.6627	No solution	1100 07/15
	2	36481	1396.7220	1397.0172	1399.9574	No solution	1199.9743

• 300_ieee (bus 1)

[1] K. Šepetanc, H. Pandžić and T. Capuder, ``Solving Bilevel AC OPF Problems by Smoothing the Complementary Conditions -- Part II: Solution Techniques and Case Study," Arxiv, June 2022.

Computation time

• Only dataset creation time scales up with network size

IEEE

- can be parallelized
- Computed on single node: 2x 20 core Intel Xeon CPU

	Dataset	NN training	Solving	Component
	creation		meta-models	total time
	[s]	[s]	(mean \pm std) [s]	[s]
3_lmbd	471	5118	$60 \times (7.7 \pm 10.0)$	6051
57_ieee	1774	5129	$60 \times (11.7 \pm 10.6)$	7605
73_ieee_rts	3644	5125	$60 \times (4.0 \pm 2.6)$	9009
300_ieee	28256	5245	$60 \times (2.0 \pm 1.9)$	33621

Conclusion

- Developed numerical scheme for solving bilevel problems with nonconvex and nonlinear lower levels
- Great accuracy is achieved using CNN
- Good computability of NN is achieved due to smooth activation function and nested substitutions
- Dataset creation can be parallelized

Acknowledgement

FER

The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 863876 (project FLEXGRID). The sole responsibility for the content of this document lies with the authors. It does not necessarily reflect the opinion of the Innovation and Networks Executive Agency (INEA) or the European Commission (EC). INEA or the EC are not responsible for any use that may be made of the information contained therein.