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Bilevel optimization
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Upper level:
• energy storage: bids energy quantity
Lower level:
• AC OPF: determines prices

Issues:
• AC OPF is nonconvex
• Continuous interaction



• Convex Polar Second-Order Taylor Approximation AC OPF

• Bilevel AC OPF by Smoothing the Complementary Conditions

• Bilevel AC OPF using Deep Convolutional Neural Networks

Solution approaches

single-level

reduction

data analytics



Bypassing the lower level

Min �𝐹𝐹 𝑥𝑥
x

subject to
𝐺𝐺𝑖𝑖 𝑥𝑥 ≤ 0 ∀𝑖𝑖

• We approximate objective function (total arbitration profit) 
with neural network:

• LL is replaced by its response, i.e. as a function of input variables
• NN represents cumulative profit to reduce the error



Dataset
• Better NN trained with dataset not respecting ES SoE limits due 

to more favorable histogram
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Convolutional neural network
• Physics informed structure: select time period has lesser impact 

on distant time periods



Integrating NN in optimization
Activation function:
• Smooth function allows for computing large NN using nonlinear solvers
NN evaluation:
• Nested substitutions to reduce the number of variables and constraints

We used softplus
with β=50



Algorithm



Results – accuracy (part 1)

• 3_lmbd (bus 3)

• 57_ieee (bus 1)

[1] K. Šepetanc, H. Pandžić and T. Capuder, ``Solving Bilevel AC OPF Problems by Smoothing the
Complementary Conditions -- Part II: Solution Techniques and Case Study,‘’ Arxiv, June 2022.



Results – accuracy (part 2)

• 73_ieee (bus 101)

• 300_ieee (bus 1)

[1] K. Šepetanc, H. Pandžić and T. Capuder, ``Solving Bilevel AC OPF Problems by Smoothing the
Complementary Conditions -- Part II: Solution Techniques and Case Study,‘’ Arxiv, June 2022.



Computation time
• Only dataset creation time scales up with network size

• can be parallelized
• Computed on single node: 2x 20 core Intel Xeon CPU



Conclusion
• Developed numerical scheme for solving bilevel problems with 

nonconvex and nonlinear lower levels
• Great accuracy is achieved using CNN
• Good computability of NN is achieved due to smooth activation function 

and nested substitutions
• Dataset creation can be parallelized
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