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Small Data Learning

ANDRBEW NG: UNBIGGEN Al

Why Small Data Is

the New Big Data

UPenn (Knowledge at Wharton)

Learning with Small Data

KDD 2020 Tutorial

- Datasets in power systems are not always big and labelled
- Can we learn from small (labeled/unlabeled) datasets?
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State Estimation \ b‘

Receives raw measurements (nodal injection, line flows, voltage etc.)
from measuring devices.

Seeks to identify the values of the bus voltage magnitudes and angles{| Vx|, 0 }vn

SE:

T

W (z — h(v))}

zp = hg(V) + € v = F(z) := argmin (z — h(v))
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State Estimation Block
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Credit: Simson, Samson Raja, et al. "Virtual state estimation calculator model for three phase
power system network." Journal of Energy and Power Engineering 10 (2016): 497-503.
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Model based method [1]:

* Existing GN method takes a lot of iterations.
* GN method may not converge for some scenarios.

v =F(z) := arg m‘}n (z — h(v))TW(z —h(v))

h(v) ~ h(vy) + GL (v — vi), G : Jacobian at vy
Vi+1 = Vi + (Gng)_le(Z — h(Vk))

Supervised learning for state estimation [2, 3, 4]

* Requires significant training samples with labels, not easy to obtain.

 Ignores the knowledge of known mathematical structure of state estimation process.

gr(z) = Y i, aro(Wiz + By)

min{ak,wk,ﬁk}le Z] HVJ o gK<Z])H%

[1] I. Dzafic, R. A. Jabr, and T. Hrnjic, “Hybrid state estimation in complex variables,” IEEE Trans. Power Syst., 2018.
[2] K. Mestav et al. “Bayesian state estimation for unobservable distribution systems via deep learning," IEEE Trans. Power Syst., 2019.

[3] L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power system state estimation and forecasting via deep unrolled neural networks," IEEE Trans. Signal Processing, 2019.
[4] A.S. Zamzam, N. D. Sidiropoulos, “Physics-aware neural networks for distribution system state estimation,” IEEE Trans. Power Syst., 2020
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Learning vs. Optimization

 Learning approaches require very large number of diverse samples

to approximate the SE mapping
e Simulations
e SE solver

 Most optimization approaches suffer from scalability issues

especially when:
 Majority of measurements are nonlinear
* Not enough redundancy with noisy measurements
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Unsupervised Learning Approach \

ML Model;

K
i I3 RO )~ S 250 (20 0) vl
i=1

We do NOT need ground-truth solutions/labels (unsupervised learning)
Physics knowledge is exploited in the learning process

Similarity with Auto-Encoders!
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Unlabeled Datasets \

f) =€, f1(x) =log(x)
mn Y loce®:0)~ ¢ mmmp min ) [llog(g (Vs 0)) — x|

X
Labeled data Unlabeled data
 Need to generate labels (voltages) for each  No need for ground-truth voltage estimates
set of measurements * |f measurements do NOT have redundancy,
 If measurements do NOT have redundancy, the estimates quality will depend on the
getting the correct labels will be very noisy regularization approach used
or corrupt * Training process required differentiating

 Training process is straightforward through the physics model
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Data Generation for SE foms.

 To be able to measure quality of our estimates, we store all ground-
truth voltage profiles (|v|, 8).

* Any set of measurements can be driven from the state of the system.

 We simulate the system under significant penetration of renewables
and varying loading conditions.

* The approach can be applied essentially with only measurements.

* |If a model-based SE is solvable, it will help assess the quality of the
proposed estimator.
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Computational Graph \ fors |

Forward Pass
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Back Propagation Pass




Unsupervised Learning Approach

Experiment: 37-Bus Distribution system

* Insufficient measurements
* Inferior measurement precision

4 IEEE

Customized loss function:

Loss = Z (Zmeasured - Zest)2 +/11 [(Vr,phl - 2-84'97)2+ (Vi,phl - 0)2
+ (Vyphz — (—1.4623)) %+ (V, np — (—2.4349))?
+(V, prz — (—1.3895))*+ (Vipp3 — 2.4336)%]

Physical equation utilized during training: 75 710 736 732 728 742

T T
Zosei = VI * D x v + cl-(l) * V + ci(z) * conj(V)

where,
v =predicted voltage
Q, P1,and P2 are the parameters of the measurement function 125 106 70 707 722

I[EEE 37-bus unbalanced distribution feeder
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Training Statistics: 729
« 90,000 scenario %6 70 76 72 728 42

* 130 Epochs
* Batch size 1000
* Learning rate 0.01

ICY

Test Statistics

* 10,000 scenario

* MSE Estimation loss: 26.5851
* MSE Voltage loss: 0.0209

A le-3 le-2 le-1 1e0 lel le2 le3

Training loss 0.0025 0.0043 0.0046 0.0074 0.0135 0.0348 0.0772
Z loss 0.1104 03123 0.4548 04586 04313 04737 0.5998
Vr_loss 0.2390 0.0316 0.0020 0.0007 0.0005 0.0009 0.0011
Vi_loss 0.0113  0.0098 0.0096 0.0098 0.0096 0.0094 0.0095

1
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OPF-Learn: An Open-Source Framework
for Creating Representative AC Optimal
Power Flow Datasets
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Do we have confidence in ML-based models?

* All papers in learning for OPF use different datasets

e ...and different ways of generating those datasets (“we perturbed
the base loading point randomly +/-10%...)

 Some different models or versions of models (MATPOWER 118-bus
vs. PG-lib 118-bus)

* Impossible to compare the results in these papers
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More representative datasets

- Current datasets for power system optimization generally just contain single points

< IEEE

- For supervised learning tasks, we need a lot of OPF solutions, that span a good representation of the feasible space

|x]

OPF-Learn: An Open-Source Framework
for Creating Representative AC Optimal
Power Flow Datasets

YA

'AA'AA

0

Trager Joswig-Jones Kyri Baker Ahmed S. Zamzam
University of Washington University of Colorado Boulder National Renewable Energy Laboratory

Will be available soon at: https://github.com/NREL/OPFLearn.jl and corresponding paper on arxiv

Kudos to the following work for N-1 security classification tasks which inspired this one: A. Venzke, D. K. Molzahn, and S. Chatzivasileiadis,
“Efficient creation of datasets for data-driven power system applications,” Electric Power Systems Research, vol. 190, p. 106614, 2021.



https://github.com/NREL/OPFLearn.jl

Data Generation Technique
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Find the Chebyshev center,
X,. Generate a random
direction vector and travel a
random distance along this
vector to find a new load
sample, x;.

Check if x; is AC-feasible. If not,
find the nearest SOC feasible
point, x;. Since x; # x; , define a
new infeasibility certificate at x;
with normal, 7 = & — x;.
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Gather a new sample, x;, as in
step 1. Check if the new x;
sample is AC-feasible. Here it is
not, so the nearest SOC
feasible point is found. x; = x;,
so discard this sample.

Sample a new load profile, x;, as
in step 1, but starting from the
last point, now x,. Check if x; is

AC-OPF feasible. x; is AC-OPF
feasible, so store x; and its AC-
OPF optimal solution.
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Finding new AC OPF solutions more efficiently oo
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OPF-Learn Dataset Typical Dataset
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Plot of unique active sets found over time with a typical dataset creation methods
and the OPF-Learn dataset creation method. Note the difference in the y-axis scale
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Improved model performance ’

OPF-Learn

. Typical Typical Dataset OPF-
Dataset Trained ypl Tyrgined Model Learn
Model OPE- /
Test OPF- Learn OPF- Typical
Dataset Learn Typical Learn Typical
case5| 2.17E-2 | 1.86E-3 | 8.57E-2 | 1.33E+0 | 9.08E-6 | 1.46E+5
case14| 2.75E-4 | 1.01E-4 | 3.67E-1 | 3.94E-2 | 9.41E-7 | 4.19E+4

case30 | 1.55E-4 | 5.46E-4 | 3.52E+0 | 8.17E-3 | 1.60E-8 | 5.11E+5

case118 | 6.97E-2 | 2.35E-1 | 3.37E+0 | 4.47E-1 | 4.47E-3 | 1.00E+2

NN models trained on OPF-Learn data have less mean squared error (MSE) when tested on representative
test sets compared to the same model trained on a typical dataset.
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Conclusion & Future Research \

Learn state estimation mapping in unsupervised fashion
utilizing knowledge of the model.

Labeled data are substituted for using model information,
at the price of increased learning complexity.

Future research:
* Adaptive penalty (linearized power flow)

* Learning model parameters in an outer loop

* Learn using distribution of measurements instead of data records

OPF-Learn.jl generates diverse datasets of loads and their
optimal solutions increasing trust in ML models.




Thank you for
your attention!

Many thank to collaborators:

Fouad Hasan
Amin Kargarian Andrey Bernstein Trager Joswig-Jones Kyri Baker
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