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Small Data Learning

- Datasets in power systems are not always big and labelled
- Can we learn from small (labeled/unlabeled) datasets?

UPenn (Knowledge at Wharton)



State Estimation 

Receives raw measurements (nodal injection, line flows, voltage etc.) 
from measuring devices.

Seeks to identify the values of the bus voltage magnitudes and angles

SE:



State Estimation Block 

• Challenges:
• Data quality

• Latency constraints

• Robustness and reliability

• Model identification!

Credit: Simson, Samson Raja, et al. "Virtual state estimation calculator model for three phase 
power system network." Journal of Energy and Power Engineering 10 (2016): 497-503.



SE Approaches
Model based method [1]: 

• Existing GN method takes a lot of iterations.
• GN method may not converge for some scenarios.

Supervised learning for state estimation [2, 3, 4]:
• Requires significant training samples with labels, not easy to obtain.
• Ignores the knowledge of known mathematical structure of state estimation process.

[1] I. Dzafic, R. A. Jabr, and T. Hrnjic, “Hybrid state estimation in complex variables,” IEEE Trans. Power Syst., 2018.
[2] K. Mestav et al. “Bayesian state estimation for unobservable distribution systems via deep learning,” IEEE Trans. Power Syst., 2019.
[3] L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power system state estimation and forecasting via deep unrolled neural networks,” IEEE Trans. Signal Processing, 2019.
[4] A. S. Zamzam, N. D. Sidiropoulos, “Physics-aware neural networks for distribution system state estimation,” IEEE Trans. Power Syst., 2020



Learning vs. Optimization

• Learning approaches require very large number of diverse samples 
to approximate the SE mapping

• Simulations
• SE solver

• Most optimization approaches suffer from scalability issues 
especially when:

• Majority of measurements are nonlinear
• Not enough redundancy with noisy measurements



Learning SE Approach
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Unsupervised Learning Approach
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• We do NOT need ground-truth solutions/labels (unsupervised learning)
• Physics knowledge is exploited in the learning process

• Similarity with Auto-Encoders!



Unlabeled Datasets

Labeled data
• Need to generate labels (voltages) for each 

set of measurements
• If measurements do NOT have redundancy, 

getting the correct labels will be very noisy 
or corrupt

• Training process is straightforward

Unlabeled data
• No need for ground-truth voltage estimates
• If measurements do NOT have redundancy, 

the estimates quality will depend on the 
regularization approach used

• Training process required differentiating 
through the physics model

𝒇𝒇 𝒙𝒙 = 𝒕𝒕𝒙𝒙,     𝒇𝒇−𝟏𝟏 𝒙𝒙 = log(𝒙𝒙)
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Data Generation for SE
• To be able to measure quality of our estimates, we store all ground-

truth voltage profiles ( 𝑣𝑣 ,𝜃𝜃).

• Any set of measurements can be driven from the state of the system.

• We simulate the system under significant penetration of renewables 
and varying loading conditions.

• The approach can be applied essentially with only measurements.

• If a model-based SE is solvable, it will help assess the quality of the 
proposed estimator.



Computational Graph
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Unsupervised Learning Approach

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = �  (𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑍𝑍𝑚𝑚𝐿𝐿𝑒𝑒)2 +𝜆𝜆1 [(𝑉𝑉𝑚𝑚 ,𝑝𝑝ℎ1 − 𝟐𝟐.𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖)2 +  (𝑉𝑉𝑖𝑖,𝑝𝑝ℎ1 − 𝟎𝟎)2

+ (𝑉𝑉𝑚𝑚 ,𝑝𝑝ℎ2 − (−𝟏𝟏.𝟖𝟖𝟒𝟒𝟐𝟐𝟑𝟑))2+  (𝑉𝑉𝑖𝑖,𝑝𝑝ℎ2 − (−𝟐𝟐. 𝟖𝟖𝟑𝟑𝟖𝟖𝟖𝟖))2 
                                                       +(𝑉𝑉𝑚𝑚 ,𝑝𝑝ℎ3 − (−𝟏𝟏. 𝟑𝟑𝟖𝟖𝟖𝟖𝟑𝟑))2 +  (𝑉𝑉𝑖𝑖,𝑝𝑝ℎ3 − 𝟐𝟐. 𝟖𝟖𝟑𝟑𝟑𝟑𝟒𝟒)2] 

Physical equation utilized during training:

𝐳𝐳𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 = 𝐯𝐯𝐻𝐻 ∗ 𝐷𝐷𝑖𝑖 ∗ 𝐯𝐯 + 𝑐𝑐𝑖𝑖
1 𝑇𝑇

∗ 𝐯𝐯 + 𝑐𝑐𝑖𝑖
2 𝑇𝑇

∗ 𝑐𝑐𝐿𝐿𝑐𝑐𝑐𝑐(𝐯𝐯)

where, 
𝑣𝑣 =predicted voltage
𝑄𝑄, 𝑃𝑃𝑃,𝑚𝑚𝑐𝑐𝑚𝑚 𝑃𝑃𝑃 are the parameters of the measurement function

Customized loss function:

Experiment: 37-Bus Distribution system 
• Insufficient measurements
• Inferior measurement precision

IEEE 37-bus unbalanced distribution feeder




]



Result Analysis

Test Statistics 
• 10,000 scenario 
• MSE Estimation loss: 26.5851
• MSE Voltage loss: 0.0209

Training Statistics:
• 90,000 scenario
• 130 Epochs
• Batch size 1000
• Learning rate 0.01



OPF-Learn: An Open-Source Framework 
for Creating Representative AC Optimal 
Power Flow Datasets



• All papers in learning for OPF use different datasets

• …and different ways of generating those datasets (“we perturbed 
the base loading point randomly +/-10%...)

• Some different models or versions of models (MATPOWER 118-bus 
vs. PG-lib 118-bus)

• Impossible to compare the results in these papers

Do we have confidence in ML-based models?



More representative datasets

Will be available soon at: https://github.com/NREL/OPFLearn.jl and corresponding paper on arxiv

Kudos to the following work for N-1 security classification tasks which inspired this one: A. Venzke, D. K. Molzahn, and S. Chatzivasileiadis, 
“Efficient creation of datasets for data-driven power system applications,” Electric Power Systems Research, vol. 190, p. 106614, 2021. 

 Current datasets for power system optimization generally just contain single points

 For supervised learning tasks, we need a lot of OPF solutions, that span a good representation of the feasible space

https://github.com/NREL/OPFLearn.jl


Data Generation Technique

Find the Chebyshev center, 
𝑥𝑥0. Generate a random 

direction vector and travel a 
random distance along this 

vector to find a new load 
sample, 𝑥𝑥𝑙𝑙.

Check if 𝑥𝑥𝑙𝑙 is AC-feasible. If not, 
find the nearest SOC feasible 

point, 𝑥𝑥l∗. Since �𝑥𝑥𝑙𝑙 ≠ 𝑥𝑥𝑙𝑙∗ , define a 
new infeasibility certificate at 𝑥𝑥𝑙𝑙∗

with normal, 𝑐𝑐 = �𝑥𝑥l − 𝑥𝑥𝑙𝑙∗.

Gather a new sample, 𝑥𝑥𝑙𝑙, as in 
step 1. Check if the new 𝑥𝑥𝑙𝑙

sample is AC-feasible. Here it is 
not, so the nearest SOC 

feasible point is found. �𝑥𝑥𝑙𝑙 = 𝑥𝑥𝑙𝑙, 
so discard this sample.

Sample a new load profile, 𝑥𝑥𝑙𝑙, as 
in step 1, but starting from the 
last point, now 𝑥𝑥0. Check if 𝑥𝑥𝑙𝑙 is 
AC-OPF feasible. 𝑥𝑥𝑙𝑙 is AC-OPF 

feasible, so store 𝑥𝑥𝑙𝑙 and its AC-
OPF optimal solution.



Finding new AC OPF solutions more efficiently



Improved model performance

NN models trained on OPF-Learn data have less mean squared error (MSE) when tested on representative 
test sets compared to the same model trained on a typical dataset.



Conclusion & Future Research

Labeled data are substituted for using model information, 
at the price of increased learning complexity.

Learn state estimation mapping in unsupervised fashion 
utilizing knowledge of the model.

Future research:
• Adaptive penalty (linearized power flow)

• Learning model parameters in an outer loop

• Learn using distribution of measurements instead of data records

OPF-Learn.jl generates diverse datasets of loads and their 
optimal solutions increasing trust in ML models.



Thank you for 
your attention!

Fouad Hasan
Amin Kargarian Andrey Bernstein Trager Joswig-Jones Kyri Baker

Many thank to collaborators:
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