



## Incorporate Operational Uncertainties into Energy Storage Valuation

Di Wu, Chief Research Engineer Pacific Northwest National Laboratory IEEE PES General Meeting July 19<sup>th</sup>, 2022



### **Storage Can Help Solve Problems in All Parts of The Grid**

- Resource adequacy
  - System capacity
  - Flexibility
  - Local capacity
- Transmission adequacy
  - Support balancing load and generation
  - Support competitive markets
- Couplings between the two
  - Additional transmission capacity enhances the capacity value of variable generation
  - Energy storage and other resources are non-wire alternatives





#### PNNL Has Assessed Energy Storage at More Than 30 Sites



#### **Capacity and Resource Adequacy**

Capacity markets and integrated resource planning ensure sufficient resources to meet the future demand

- Capacity markets:
  - Capacity payment is for participants offering supply capacity for ensuring resource adequacy.
  - Capacity charge is paid by load serving entities based on their coincident demand during system peak hours.
- Power purchase agreement: energy storage can be used to reduce capacity charge.
- Vertically integrated utilities: capacity value can be estimated based on the incremental cost of next best alternative investment (e.g., peaking combustion turbine) to meet the load and loss of load probability analyses.

#### **ElectriCities Energy Storage Analytics**



ElectriCities provides management services for about 90 public power municipalities in North Carolina, South Carolina, and Virginia.

- Capacity charge: based on the coincident demand during Duke Energy Progress monthly peak hours, with a demand rate at more than \$20/kW-month
- ElectriCities does not know exactly when the peak hour will occur

Capacity charge reduction analytics:

- Dispatch under uncertainty
- Optimal sizing
- Coordination with other resources
- Benefits allocation among member utilities

#### **Project Synopsis**



IEEE

Power & Energy Societv®

#### **Challenges – Day-ahead Scheduling**



- Cannot tell exactly whether tomorrow is the peak day (the day that contains the highest hourly load) of the month
- Dispatching the BESS for demand reduction on all "high-load" days causes unnecessary degradation

A strategy is needed to determine whether to dispatch a BESS for demand reduction day-ahead

#### August 2015-2020



#### **Challenges – Hour-ahead Scheduling**



- Cannot tell exactly which hour is the peak hour
- Cannot dispatch the BESS at the maximum power for all "high-load" hours due to limited energy capacity

A method is required to determine discharging hours and power levels on the operating day



#### A Two-Step Hybrid Dispatch

- Two-step hybrid dispatch
  - Policy-based method to trigger a dispatch
  - Stochastic or robust dispatch
- Multi-time-scale load forecast models
  - Peak-day probability
  - Peak-hour probability
- BESS model used in MPC
  - Constant-efficiency or high-fidelity model
  - Degradation effects
- Methods for establishing thresholds
  - Searching through for-loop, bilevel-optimization, or learning-based methods





#### **Techno-economic Analysis Parameters**

- BESS parameters
  - Rated power: 5 MW
  - Round-trip efficiency: 88%
  - Duration: 1, 2, or 4 hours (usable energy)
  - Cycle life: a warranty of 100 cycles/year \* 15 years = 1500 cycles
    Calendar life: 20 years
- Testing Years: 2001, 2006, 2008, 2011, 2019, 2020
- Demand charge: \$20/kW-month
- Real discount rate: 5%

#### **Key Findings**

• The average annual cycle usage and BESS life only depend on the threshold used for peak-day probabilities.

- The threshold selection also affects the performance in capturing peak days.
- The duration of the BESS affects the performance in capturing peak hours.

| Threshold | Cycles | Life (yr) | Number of Peaks Captured |        |        |
|-----------|--------|-----------|--------------------------|--------|--------|
|           |        |           | 1-hour                   | 2-hour | 4-hour |
| 0%        | 365    | 4.1       | 8.5                      | 11.2   | 11.9   |
| 2%        | 94     | 16.0      | 8.5                      | 11.2   | 11.9   |
| 3%        | 76     | 19.7      | 8.2                      | 10.8   | 11.3   |
| 10%       | 38     | 20.0      | 6.8                      | 9.0    | 9.5    |



#### **Annual Cycle Usages**

- Annual cycle usage varies by year, but the pattern of cycle usage versus threshold remains the same.
- The variability of the system load in different years is not the same, which affects the peak-day probabilities and their likelihood to exceed the threshold, and thereby the cycling frequency.



#### **Number of Peaks Captured**



IEEE

Power & Energy Society

- The number of peaks captured is the same for 2% and 3% thresholds for most of the testing years.
- With the 1-hour BESS, many peaks are missed, even with a 0% threshold where all missed peaks are due to the missed peak hours.
- The performance is significantly improved when increasing the duration to 2 and 4 hours.
- The model works well in summer and winter months, and the performance degrades in shoulder months, such as May and September.

#### **Cost-benefit Analysis**

- A threshold of 3% performs better than 2%, leading to 4-6% and 6-10% increments in benefits and net benefits, respectively.
- The BESS cost only depends on BESS duration while the benefits depend on both the duration and threshold.
  - Increasing the duration from 1 to 2 hours increases the benefits by about 30% and net benefits by about 17%
  - Further increasing the duration from 2 to 4 hours increases the benefits by about 5%, and net benefits decrease by about 40%.



IFFF

#### **Conclusions and Future Work**



 Co-design is required to capture the interdependency between energy storage sizing and control design

IFFF

- Storage capacity maintenance agreement may fail some advanced state-ofhealth models for storage valuation
- An optimal portfolio dispatch strategy is desired for a variety of resources (conventional generators, load control, voltage reduction, and energy storage) to account for dispatch order, dispatch duration, and movement of the system peak
- Modeling uncertainties become more important and challenging for longduration energy storage



# **Thank You**

Di Wu di.wu@pnnl.gov