
Yuzhang Lin, Ph.D.

Assistant Professor
Dept. of Electrical and Computer Eng.

University of Massachusetts Lowell
yuzhang_lin@uml.edu

State and Parameter Estimation
for Inverter-Based Resources 



Inverter Based Resources (IBRs)
• Future power grids will be dominated by

devices with power-electronics interfaces,
i.e., inverter-based resources.

• Challenges on power system dynamics:
 Low inertia and fast dynamics;
 Distributed and diverse controls;
 New instability mechanisms (DC side, PLL,

etc.);
 Stability issues over wide frequency range.

• Power grids require more advanced
monitoring technologies to provide support
for real-time decision-making.

Power grid dominated by inverter-based resources (IBRs).



Dynamic State Estimation (DSE)
• Dynamic state estimation (DSE) emerges as a power

tool for the monitoring of power system dynamics [1].
• Over the past decade, extensive work has been done

of the DSE of synchronous generators (SGs).
• Comparatively, much less has been accomplished on

the DSE of IBRs.
• As SGs are gradually replaced by IBRs, IBRs need to

be monitored in a similar way as SGs. Not much
consensus has been reached on DSE for IBRs.

[1] J. Zhao et al., "Power System Dynamic State Estimation: Motivations, Definitions, Methodologies, and Future Work," in IEEE Transactions on Power Systems, vol. 34, no. 4, 
pp. 3188-3198, July 2019, doi: 10.1109/TPWRS.2019.2894769.
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DSE for IBRs: Motivation
• DSE for IBRs can enable a variety of novel applications. A few examples are given below.

 Modeling:

 Monitoring:

 Control:

 Protection:

Example: T. Wang, S. Huang, M. Gao and Z. Wang, "Adaptive extended Kalman filter based dynamic equivalent
method of PMSG wind farm cluster," IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 2908-2917,
May-June 2021.

Example: K. Yue, Y. Liu, P. Zhao, B. Wang, M. Fu and H. Wang, "Dynamic state estimation enabled health indicator
for parametric fault detection in switching power converters," IEEE Access, vol. 9, pp. 33224-33234, 2021.

Example: S. Yu, T. Fernando, K. Emami and H. H. -C. Iu, "Dynamic state estimation based control strategy for DFIG
wind turbine connected to complex power systems," IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 1272-
1281.

Example: Kaiyu Liu, Dynamic State Estimation Based Protection for Power Electronics Systems, Ph.D. Dissertation,
Georgia Institute of Technology, 2022.



DSE for IBRs: Available Measurements

[2] NERC Reliability Guideline, BPS-Connected Inverter-Based Resource Performance, Sep. 2018. https://www.nerc.com/comm/PC_Reliability_Guidelines_DL/Inverter-
Based_Resource_Performance_Guideline.pdf
[3] M. Izadi and H. Mohsenian-Rad, "Synchronous Waveform Measurements to Locate Transient Events and Incipient Faults in Power Distribution Networks," in IEEE 
Transactions on Smart Grid, vol. 12, no. 5, pp. 4295-4307, Sept. 2021.

Measurements [2] Synchronization Continuity Sampling Rate Dynamics to capture

SCADA non-synchronized continuous remotely ~100 samples per sec Steady state

Phasor measurement units 
(PMUs) and micro-PMUs

synchronized continuous remotely ~101-102 samples per sec Outer-loop control; electromechanics

Dynamic disturbance 
recorders (DDRs) [2]

synchronized continuous remotely ~101-102 samples per sec Outer-loop control; electromechanics

Waveform measurement 
units (WMUs) [3]

synchronized continuous remotely ~102-103 samples per sec Outer-loop/inner-loop control; 
electromechanics/electromagnetics

Merging units (MUs) and 
Digital fault recorders (DFRs)

synchronized
/non-synchronized

continuous locally;
event-triggered remotely

~103-104 samples per sec Inner-loop control; 
electromagnetics

Inverter sensors non-synchronized continuous locally;
event-triggered remotely

~104 -105 samples per sec Inner-loop control; electromagnetics; 
high-frequency transients

• Possible data sources for DSE for IBRs are summarized as below.

• Edge computing technologies can be exploited to perform local DSE for IBRs (with local applications
plus down-sampled reporting to control centers for grid-wise applications).

https://www.nerc.com/comm/PC_Reliability_Guidelines_DL/Inverter-Based_Resource_Performance_Guideline.pdf


DSE for IBRs: Existing Works and Limitations

• Existing work on DSE for IBRs:
 Systems: DFIG-WT, PMSG-WT, solar PV, energy storage, microgrid
 Algorithms: IEKF, AEKF, UKF, EnKF, ACKF, UPF, …

• Essential difference from SG: IBR dynamics are largely dependent by controllers, i.e., are a
heavy mix of physical and digital (cyber) dynamics!

• Limitations of existing work: physical plant and digital
controller models are blended in a single-state space.
 Inability to address the uncertainties of data flows

between the physical plant and the controller (i.e.,
uncertainties in measurement signals and control signals).

 Inability to distinguish between cyber and physical events.
 Inability to adapt to diverse control algorithms and

control mode switching.
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Cyber-Physical State-Space 
Representation of IBRs

• We propose a dual cyber-physical state-space model for
IBRs, where the interaction between physical dynamics
and digital (cyber) dynamics can be explicitly modeled.

• Strength of the proposed model:
 Modeling and suppressing the uncertainties in

measurement signals and control signals.
 Ability to distinguish between cyber and physical events.
 Versatility to diverse control algorithms and control mode

switching.

Cyber-physical state-space representation of IBRs.
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Cyber-Physical Dual DSE for IBRs
• Noting the duality of the cyber state space and

the physical state space, a dual DSE framework
can be constructed.

Cyber-physical dual DSE framework for IBRs.

Physical DSE (PDSE) Cyber DSE (CDSE)

Observations Measurement signals Control signals

States to track Physical states of circuits, 
machines, batteries, etc.

Digital states of controllers

Errors to filter Noise and bad data in 
measurement signals

Noise and bad data in 
control signals

Events to detect Physical events (faults, 
switching, etc.)

Cyber events (controller 
failure, cyber attacks, etc.)

Parameters to 
identify

Physical parameters 
(inductance, inertia, etc.)

Control parameters 
(PI gain, droop, etc.)

• The framework is generic. Any existing DSE algorithm can be applied, e.g., EKF, UKF, CKF, etc.



Physical State Space of IBRs: 
Solar PV System Example 

• State equations:

Solar PV generation system.  
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Cyber State Space of IBRs: 
Grid-Following Control Example (MPPT) 

Maximum Power Point Tracking (MPPT) control for solar PV systems.
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Cyber State Space of IBRs: 
Grid-Forming Control Example (VSG) 

Virtual Synchronous Generator (VSG) control.
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Dynamic Parameter Estimation (DPE) of IBRs

• Motivation: With growing penetration of IBRs, the dynamic models of IBRs must be
accurate enough for characterizing behaviors of the system under disturbances.

• Common reasons for inaccurate model parameters:
 Inaccurate plant equivalent models by manufacturers
 Physical model parameters: change of ambient condition, change of operating point, etc.
 Controller model parameters: unreported tuning, commend from higher-level control, etc. For

example, “inertia constant” and “damping coefficient” of a VSG can be easily modified!

• By state augmentation, DSE algorithms can be easily extended to track either physical or
controller model parameters.
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Case Study
• Simulation is performed on IEEE 13-node test feeder. 5

solar PV systems are integrated:
 IBRs at nodes 645 & 684: single-phase, 50 kVA, MPPT;
 IBRs at nodes 680 & 692: three-phase, 500 kVA, MPPT;
 IBR at node 633: three-phase, 500kVA, VSG.

• DSE is performed for the IBR at node 692 (grid-following,
MPPT) and the IBR at node 633 (grid-forming, VSG).

• Cubature Kalman filter (CKF) is used for noise filtering
and the largest normalized residual (LNR) test is used for
bad data processing.

• True values are generated via Simulink.

• Measurement sampling rate is 3840Hz. MU, DFR, or
inverter sensors can readily fulfill this requirement.

IEEE 13-node test feeder with 5 IBRs.
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Raw 2.00% 2.00%
Estimated 0.68% 0.62%

Raw 2.00% 2.00% 2.00%
Estimated 0.68% 0.62% 0.31%

Case Study
• For the grid-following (MPPT) controlled IBR, a reactive

power reference change is implemented at 1.5s, and a
solar irradiance change is implemented at 2s.

• The DSEs track the states of both the physical system
and the controller very well.

• The RMSEs of the estimated outputs (i.e.,
measurement signals and control signals) are
significantly lower than those of the raw outputs,
validating the noise filtering effect of the estimators.

Tracking of physical PV system state.
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Case Study
• Bad data are added into both measurement signals

and control signals.
 Measurement signals (outputs of physical system):

sensor poor contact, communication packet losses.

 Control signals (outputs of digital controller):
random number, signal swapping.

• Bad data in measurement signals and control
signals can be effectively suppressed.

Bad data detection and suppression for grid-following 
(MPPT) controller.



Raw 1.00% 1.00%
Estimated 0.09% 0.18%

Case Study
• For the grid-forming (VSG) controlled IBR, a frequency

droop is implemented at 3.5s.
• The DSEs track the states of both the physical system

and the controller very well.
• Note that the VSG states, i.e., “power angle”, “rotor

speed”, etc. are internal states of the digital controller,
which are not disclosed to grid operators. However,
based on the outputs of the controller, these variables
can be accurately estimated, which are critical to
online stability analysis of the system. Tracking of grid-forming (VSG) controller state.
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Case Study
• Bad data are added into both measurement signals

and control signals.
 Measurement signals (outputs of physical system):

sensor poor contact, communication packet losses.
 Control signals (outputs of digital controller): random

number, ramp change, and step change.

• Bad data in measurement signals and control signals
can be effectively suppressed.

Bad data detection and suppression for grid-forming 
(VSG) controller.



Conclusion
• DSE for IBRs can enable various novel applications for system modeling, monitoring, control, and

protection. Data sources for DSE for IBRs are reviewed.

• We present a dual cyber-physical state space model to characterize the heavy mix of digital and
physical dynamics of IBRs. This model allows:

 Modeling the uncertainties in measurement signals and control signals;
 Ability to distinguish between cyber and physical events;
 Versatility to diverse control algorithms and control mode switching.

• A dual DSE framework based on the cyber-physical state space model is proposed. Simulation
results show that the proposed framework can:

 Track the unknown states of the physical inverter system and the digital controller;
 Detect/suppress bad data in measurement signals and control signals.

• The possibility of parameter estimation for both the physical inverter system and the digital
controller is discussed.
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