

Advanced PMU Data Processing for Oscillation Detection and Identification

Denis Osipov, Joe H. Chow Rensselaer Polytechnic Institute osipod@rpi.edu

July 18, 2022

IEEE PES General Meeting

Synchrophasor Data Analytics for Power System Monitoring, Operation and Planning

Introduction

Oscillation is a periodic variation of power system quantities (voltages, currents)

Sources of the oscillations in a power system:

- Improper tuning of power system stabilizers which reduces damping of a natural mode
- Maloperation of cyclic nature in the mechanical or electrical control systems of a power plant which causes a forced oscillation in the system

Consequences of unmitigated oscillations:

- Equipment damage
- Power outage

Examples of natural and forced oscillations:

- August 10, 1996 WSCC System Outage
- January 11, 2019 El Forced Oscillation Event

Factors Influencing Oscillation Source Identification

- Load characteristics: dependence of active power consumed by a load on voltage magnitude
- Cause of oscillation: due to maloperation in either reactive or active power control equipment
- Observability: is oscillation present in measured signals and how close to the source the available measurements are
- Resonance condition: frequency of a forced oscillation is close to frequency
 of a natural mode

Cross-Power Spectral Density

Power transfer on a lossless branch: $P = \frac{V_2}{V}V_1(\theta_1 - \theta_2)$

$$P = \frac{V_2}{X}V_1(\theta_1 - \theta_2)$$

$$Q = \frac{V_1 - V_2}{X} V_1$$

 V_1 and θ_1 are considered to be the inputs; P and Q are considered to be the outputs

Output leads input \rightarrow source of forced oscillation at the beginning of the branch

Input-output relationship \rightarrow input-output cross-correlation \rightarrow input-output cross-power spectral density (CPSD):

$$S_{\theta P} = \overline{\mathcal{F}\{\theta\}} \circ \mathcal{F}\{P\}$$

$$S_{VP} = \overline{\mathcal{F}\{V\}} \circ \mathcal{F}\{P\}$$

$$S_{\theta P} = \overline{\mathcal{F}\{\theta\}} \circ \mathcal{F}\{P\}$$
 $S_{VP} = \overline{\mathcal{F}\{V\}} \circ \mathcal{F}\{P\}$ $S_{VQ} = \overline{\mathcal{F}\{V\}} \circ \mathcal{F}\{Q\}$

where \mathcal{F} {} denotes the Fourier transform, \circ denotes the element-wise product, $\bar{}$ denotes the conjugate.

Source location: the branch with the largest *imaginary part* of CPSD:

- radial topology: source is identified
- ring or meshed topology: bus with the largest total Im(CPSD) outflow is the source

Incremental Energy

Input-output relationship \rightarrow energy function:

$$E = \int_{u_0}^{u} y(t) du(t)$$

Incremental energy:

$$W = \int_{\Delta u_0}^{\Delta u} \Delta y(t) d\Delta u(t)$$

where $\Delta y = y - y_s$, $\Delta u = u - u_s$, y_s and u_s are the output and input trajectories corresponding to quasi-steady state.

CPSD Incremental energy $S_{\theta P} = \overline{\mathcal{F}\{\theta\}} \mathcal{F}\{P\} \quad \Rightarrow \qquad W_{\theta P} = \int\limits_{\Delta \theta_0}^{\Delta \theta} \Delta P(t) d\Delta \theta(t)$ $S_{VQ} = \overline{\mathcal{F}\{V\}} \mathcal{F}\{Q\} \quad \Rightarrow \qquad W_{VQ} = \int\limits_{\Delta V_0}^{\Delta V} \Delta Q(t) d\Delta V(t)$ $S_{VP} = \overline{\mathcal{F}\{V\}} \mathcal{F}\{P\} \quad \Rightarrow \qquad W_{VP} = \int\limits_{\Delta P(t)} \Delta P(t) d\Delta V(t)$

Dissipating Energy

$$W_D = \int 2\pi \Delta P(t) \Delta f(t) dt$$
$$+ \int \Delta Q(t) d(\Delta \ln V(t))$$

 S_{VP} CPSD addresses the issue of misidentification reported in: Y. Zhi and V. Venkatasubramanian, "Analysis of energy flow method for oscillation source location," *IEEE Trans. Power Syst*, vol. 36, no. 2, pp. 1338-1349, Mar. 2021

Load Characteristics

Load Model test in the 179-bus WECC System

A test case from the Test Cases Library for Methods Locating the Sources of Sustained Oscillations.

Case F_7_2: Forced signal of 0.43 Hz is injected into the excitation system of Generators 70 and 118 It becomes a difficult case when constant impedance load model is used, effecting the dissipating energies

Oscillation Cause Identification

Oscillation source type identification

- **Type of source**: compare power spectral density of active power $S_P = \mathcal{F}\{P\}$ and reactive power $S_Q = \mathcal{F}\{Q\}$
- $\max(|S_P|) > \max(|S_Q|) \rightarrow P$ -type: generator governor, cyclic load, sending HVDC terminal
- $\max(|S_P|) < \max(|S_Q|) \rightarrow Q$ -type: generator excitation system, receiving HVDC terminal
- For a Q-type the oscillation is observed in both the active and reactive power signals: $\max(|S_P|) \cong \max(|S_O|) \rightarrow Q$ -type

Source type identification in the 240-bus WECC System

A test case from the Test Cases Library for Methods Locating the Sources of Sustained Oscillations.

Simulated cases for 2021 IEEE-NASPI Oscillation Source Location Contest.

Case 3: Forced oscillation signal of 0.379 Hz is injected into the excitation system of a generator at Bus 1131.

Source of potential confusion – the bus with the oscillation source is not monitored; large CPSD flows occur at branches connected to Bus 1401 (lower left corner)

$$\max(|S_P|) = 267 < \max(|S_Q|) = 436 \rightarrow excitation system$$

CPSD flow

Dynamic Component Extraction

Dynamic Component Extraction by Quasi-steady State Removal

Observability

Actual Oscillatory Event In ISO New England

270

A test case from the Test Cases Library for Methods Locating the Sources of Sustained Oscillations. Cases of actual oscillatory events

Case 6: Forced oscillation of 0.14 Hz at a power plant measured at the receiving end of a line Dissipating energy changes direction due to *absence* of the oscillation in the voltage angle signal

270

A test case from the Test Cases Library for Methods Locating the Sources of Sustained Oscillations.

Simulated cases for 2021 IEEE-NASPI Oscillation Source Location Contest.

Case 4: Forced signal of 0.379 Hz is injected into the governor of a generator at Bus 3831

This case is difficult because of limited observability; our method can only identify a zone with several possible buses

CPSD flow

Conclusions

Conclusions

Advantages of the CPSD approach:

- does not require band-pass filtering
- requires only topological information
- can accurately identify the type of the source
- performs well when active power consumed by loads depends on voltage magnitude

Limitation of the CPSD approach:

long window of data is required for good frequency resolution

Future directions:

 Adoption of measurement devices with improved accuracy of voltage angle/frequency measurements