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Machine learning for optimal power tlow (OPF)
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Powerful Neural

OPF Network (NN)
Solvers Model

> Attain a pre-trained OPF input-output mapping from available samples



Existing work and our focus

> Integration of renewable, flexible resources increases the grid variability and motivates real-
time, feasible OPF via training a neural network (NN)

=  Warm start the search for ac feasible solution [Baker "19]
= Feasible domain to reduce limit violation [Zamzam et al’20][Zhao et al’21]

= KKT conditions based regularization [Zhang et al'22] [Nellikkath et al’22]
= Connection to the duality analysis of convex OPF [Chen et al’20] [Singh et al"20]

» Rely on FCNN architecture and cannot adapt to varying topology

Focus: graph learning approach for complexity reduction & topology adaptivity



Real-time ac-OPF

» Power network modeled as a graph | with N nodes

» ac-OPF for all nodal injections
Nodal input:
I
power limits + costs

Nodal output: optimal p/q

parameters!

[Each FCNN layer has | N }




TOPology dependence DIENER -

» [Owerko et al’20] using graph learning to predict p/q lz/'; 3 r
» But topology dependence (locality) of output label is crucial! - “f"g ™

» Locational marginal price from (very few) congested lines
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» Voltage magnitude [l approximated using q injection
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Locational marginal price (LMP) map

Real-Time Locational Prices: Real-Time Market - SCED Pricing
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Hover over points to view details.

Displayed SCED prices are the sum of:

* L MPs

* On-Line Reserve Price Adder

= On-Line Reliability Deployment Price Adder

Help?
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» Input formed by nodal features as rows \ I /\\ e T
» GNN layer [ with learnable parameters Input feature X° is a 6xd matrix
Topology-based graph filter | N "Prop.1 (GNN complexity):

I If lines are sparse [N
and let |G . then the

number of parameters for each

» GNN used for grid fault location [Li-Deka’21] \GNN L )
Hamilton, William L. "Graph representation learning." 2020. C()mpared tO FCNN,S -

https://www.cs.mcqill.ca/~wlh/arl book/

Feature filters - for higher-dim. nonlinearity
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From GNN outputs to OPF variables

» LMP decides (feasible) p from economics _
» Decoupled (d-)PF approximates angle _

» GNN outputs of LMP and [l can fully determine the power flow

~ dispatch ~ d-PF ~

PF .
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Liu, Shaohui, Chengyang Wu, and Hao Zhu. "Topology-aware Graph Neural Networks for Learning Feasible and Adaptive AC-OPF Solutions,” submitted.
https://arxiv.org/pdf/2205.10129
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Feasibility regularization (FR)
> Loss function for predicting LMP and [ll

Infinity-norm on LMP due to its larger variability than |l

» Network-wide line limits are difficult to satisty

» FR to reduce line flow violations: _

a D
Prop. 2 (Feasibility): ac-FR based OPF learning is a fully feed-forward NN. The proposed
FR term still allows for efficient using autograd and backpropagation. The feasibility of

\both predicted [lland B can be strictly enforced via projections, as well.

/

Liu, Shaohui, Chengyang Wu, and Hao Zhu. "Topology-aware Graph Neural Networks for Learning Feasible and Adaptive AC-OPF Solutions,” submitted.
https://arxiv.org/pdf/2205.10129
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Benchmark results

» 118-bus and 1354-bus for ac-opf

» Metrics: normalized MSE; line flow limit violation rate; model complexity

» GNN, FCNN, both + feasibility regularization (FR)
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OPF learning under contingency

a5 N7
i\ /\ " outage

» Topology-agnostic NNs lack in transfer capability -. I y g
= Sample re-generation and re-training are time-consuming ) / = T
» OPF outputs tend to be stable under line outages " — active
= Thanks to stability of the eigen-space
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GNN topology transtfer learning

» Perturb the original system with the outages of 2-4 lines of high capacity
» Pre-trained GNN for the original system has reasonable error rates
= warm-start the re-training using only half of samples

» GNN exhibits excellent adaptivity to the varying grid topology

= Re-training takes only 3-5 epochs to converge to the original performance
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Learning for resilient operations

» Grid resilience challenged by resource variability and extreme weather

» Optimal load shedding (OLS) is a special case of ac-OPF

= Centralized optimization using
system-wide information

= However, need very fast-speed
communication links and

computation capability

= Can we use ML to enable
scalable OLS at each node using
local information only?

(O:node /N :failure () load
(

bus) shedding



ML for decentralized load shedding

» Each load center learns the decision rule from historical or synthetic scenarios
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Yuqi Zhou, Jeehyun Park, and Hao Zhu, “Scalable Learning for Optimal Load Shedding Under Power Grid Emergency
Operations,” PES General Meeting (PESGM) 2022 (accepted) https://arxiv.org/abs/2111.11980
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Prediction under single line outage

» IEEE 14-bus system; quadratic cost functions

» All (N — 1) contingency scenarios, under different load conditions
(1000 samples for each scenario)
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Learning and Optimization Hao Zhu
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Learning for grid resilience
Learning for dynamical resources

Learning for inverter-based resources

Thank you!
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