

IEEE PES General Meeting July 2022

Topology-aware Graph Neural Networks for Learning Feasible and Adaptive ac-OPF

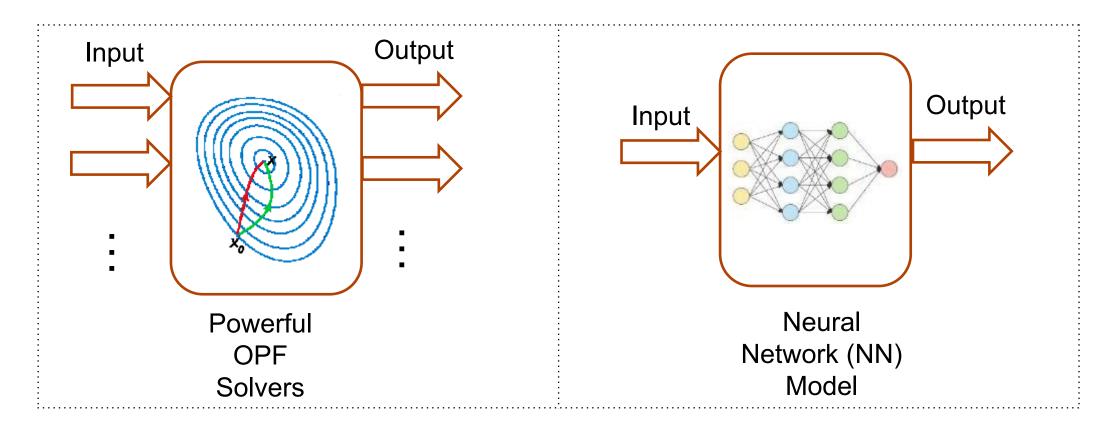
Hao Zhu

Assistant Professor of ECE Kilby/TI Endowed Faculty Fellow The University of Texas at Austin

haozhu@utexas.edu

Acknowledgements: Shaohui Liu, NSF Grants 1802319, 1952193, 2130706

Machine learning for optimal power flow (OPF)



> Attain a pre-trained OPF input-output mapping from available samples

Existing work and our focus

- Integration of renewable, flexible resources increases the grid variability and motivates realtime, feasible OPF via training a neural network (NN)
 - Warm start the search for ac feasible solution [Baker '19]
 - Feasible domain to reduce limit violation [Zamzam et al'20][Zhao et al'21]
 - KKT conditions based regularization [Zhang et al'22] [Nellikkath et al'22]
 - Connection to the duality analysis of convex OPF [Chen et al'20] [Singh et al'20]
- Rely on FCNN architecture and cannot adapt to varying topology

Focus: graph learning approach for *complexity reduction & topology adaptivity*

Real-time ac-OPF

- > Power network modeled as a graph with *N* nodes
- > ac-OPF for all nodal injections

Nodal input:

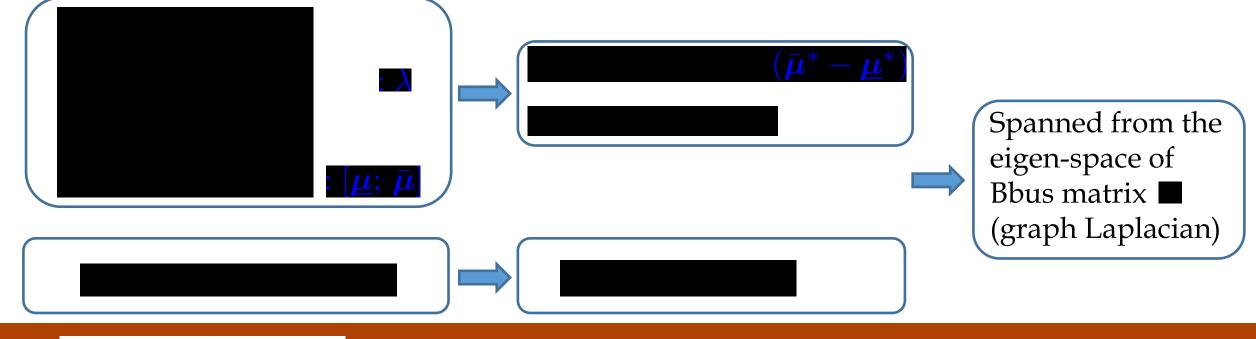
power limits + costs

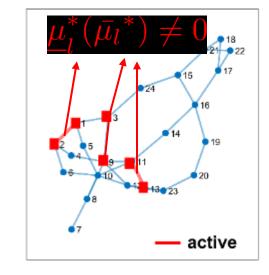
Nodal output: optimal p/q

Each FCNN layer has | parameters!

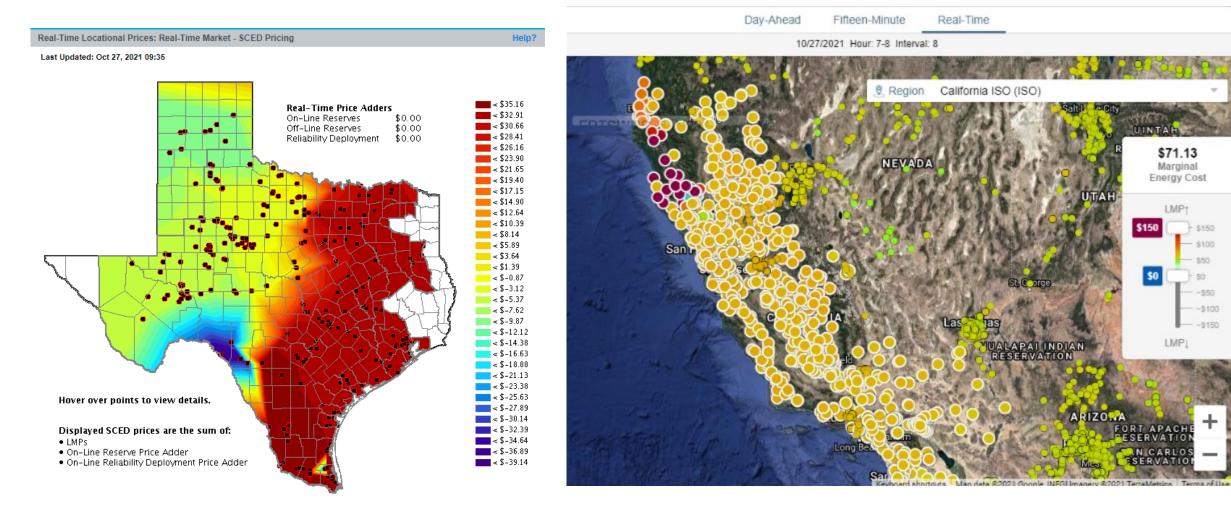
Topology dependence

- [Owerko et al'20] using graph learning to predict p/q
- But topology dependence (locality) of output label is crucial!
- Locational marginal price from (very few) congested lines
- Voltage magnitude approximated using q injection

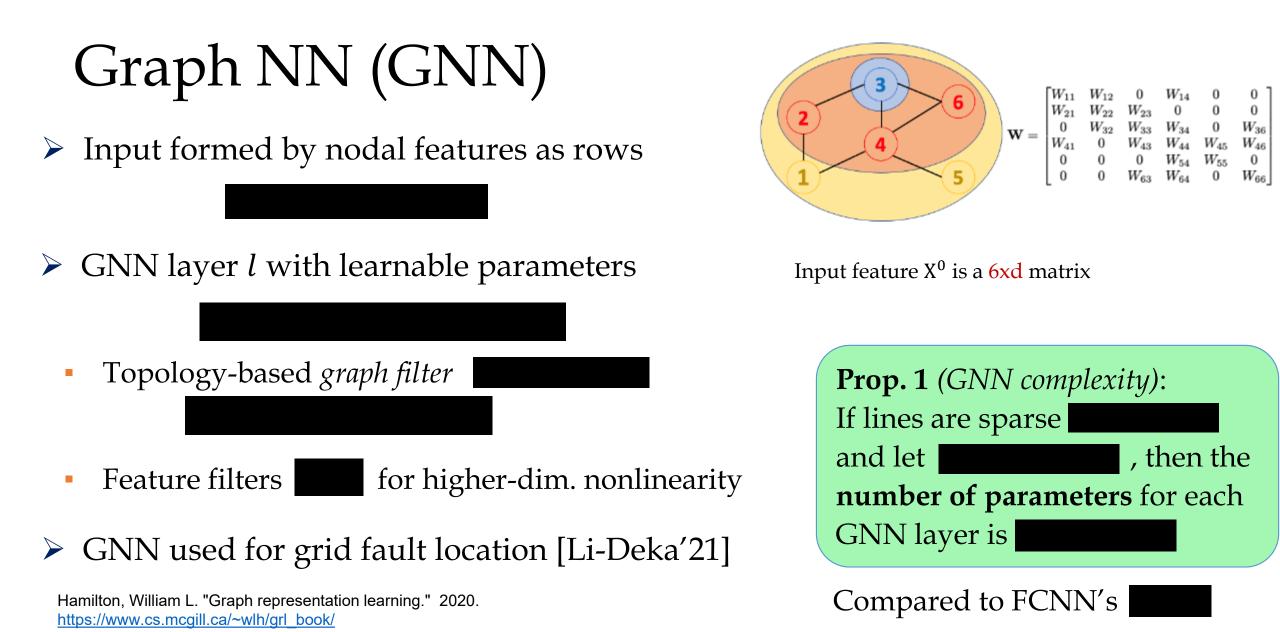




Locational marginal price (LMP) map



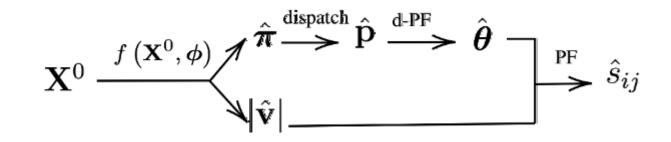
The University of Texas at Austin
 Electrical and Compute
 Engineering



From GNN outputs to OPF variables

- > LMP decides (feasible) *p* from economics
- Decoupled (d-)PF approximates angle

➢ GNN outputs of LMP and can fully determine the power flow



Liu, Shaohui, Chengyang Wu, and Hao Zhu. "Topology-aware Graph Neural Networks for Learning Feasible and Adaptive AC-OPF Solutions," submitted. <u>https://arxiv.org/pdf/2205.10129</u>

Feasibility regularization (FR)

Loss function for predicting LMP and

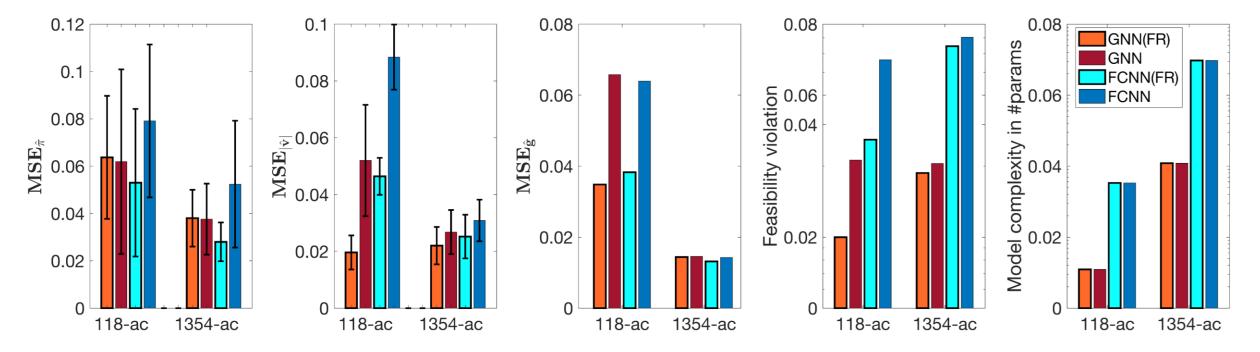
- Infinity-norm on LMP due to its larger variability than
- Network-wide line limits are difficult to satisfy
- **FR** to reduce line flow violations:

Prop. 2 (*Feasibility*): ac-FR based OPF learning is a *fully feed-forward* NN. The proposed FR term still allows for efficient using *autograd* and *backpropagation*. The feasibility of both predicted and can be strictly enforced via projections, as well.

Liu, Shaohui, Chengyang Wu, and Hao Zhu. "Topology-aware Graph Neural Networks for Learning Feasible and Adaptive AC-OPF Solutions," submitted. <u>https://arxiv.org/pdf/2205.10129</u>

Benchmark results

- > 118-bus and 1354-bus for ac-opf
- Metrics: normalized MSE; line flow limit violation rate; model complexity
- GNN, FCNN, both + feasibility regularization (FR)

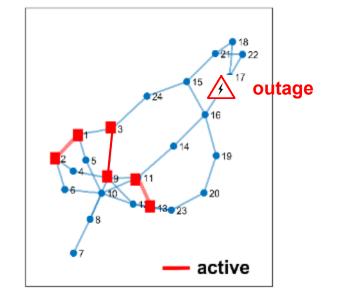


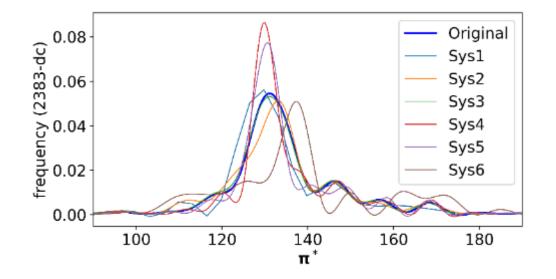
OPF learning under contingency

- Topology-agnostic NNs lack in transfer capability
 - Sample re-generation and re-training are time-consuming
- > OPF outputs tend to be stable under line outages
 - Thanks to stability of the eigen-space

-

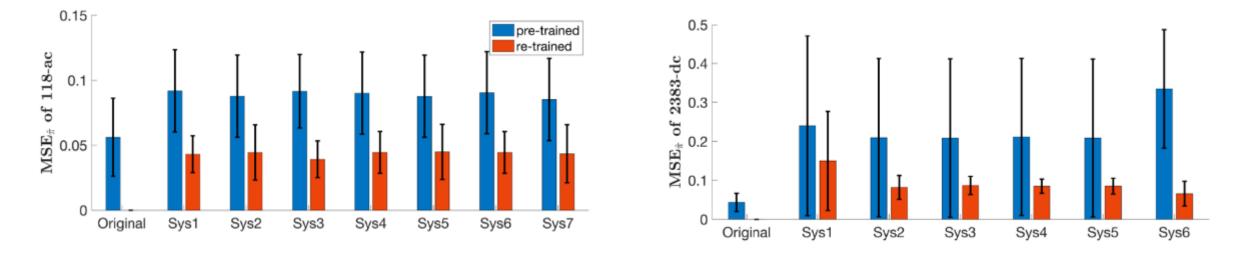
- with
- LMP outputs slightly vary with the outages of multiple lines (of high capacity)
- We have established analytical bounds for this perturbation on graph subspace





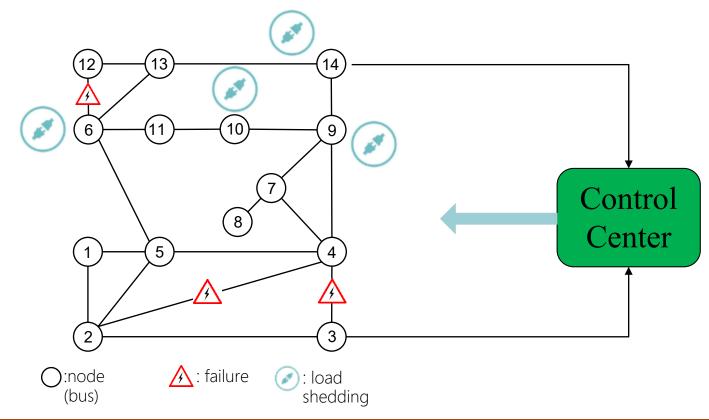
GNN topology transfer learning

- > Perturb the original system with the outages of 2-4 lines of high capacity
- Pre-trained GNN for the original system has reasonable error rates
 - warm-start the re-training using only half of samples
- GNN exhibits excellent adaptivity to the varying grid topology
 - Re-training takes *only 3-5 epochs* to converge to the original performance



Learning for resilient operations

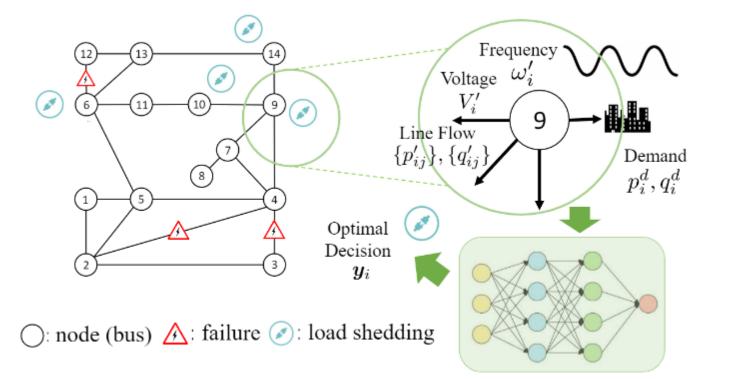
- Grid resilience challenged by resource variability and extreme weather
- Optimal load shedding (OLS) is a special case of ac-OPF



- Centralized optimization using system-wide information
- However, need very fast-speed communication links and computation capability
- Can we use ML to enable scalable OLS at each node using local information only?

ML for decentralized load shedding

Each load center learns the decision rule from historical or synthetic scenarios



Input feature:

$$m{x}_i = \left[p_i^d, q_i^d, V_i', \{ p_{ij}' \}, \{ q_{ij}' \}, \omega_i'
ight]$$

Local reduction solutions:

$$\boldsymbol{y}_i = [p_i^s, q_i^s]$$

Yuqi Zhou, Jeehyun Park, and Hao Zhu, "Scalable Learning for Optimal Load Shedding Under Power Grid Emergency Operations," *PES General Meeting (PESGM)* 2022 (accepted) <u>https://arxiv.org/abs/2111.11980</u>

Prediction under single line outage

- IEEE 14-bus system; quadratic cost functions
- All (N 1) contingency scenarios, under different load conditions (1000 samples for each scenario)



Learning and Optimization for Smarter Electricity Infrastructure

haozhu@utexas.edu http://sites.utexas.edu/haozhu/ @HaoZhu6

Learning for grid resilience Learning for dynamical resources Learning for inverter-based resources

Thank you!

....